Loading ...
Sorry, an error occurred while loading the content.

Re: puzzle for a counterexample

Expand Messages
  • djbroadhurst
    ... Counterexamples are easy enough to find: n = 79786523; a = 2982522; s = 0; t = 36290422; n = 97676723; a = 14888402; s = 0; t = 60052383; David
    Message 1 of 66 , Oct 31, 2012
    • 0 Attachment
      --- In primenumbers@yahoogroups.com,
      "bhelmes_1" <bhelmes@> wrote:

      > 1. gcd (a, p)=1
      > 2. Let jacobi (a, p) = -1
      > 3. let jacobi (a^2-a, p)=-1
      > 4. a^[(p-1)/2]=-1 mod p
      > 5. if (a+sqrt (a))^p = a-sqrt(a) mod p
      > 6. s+t*sqrt(a):=(a+sqrt (a))^[(p+1)/2] implies that
      > gcd (s, p)=1 or 0 or p, and gcd (t, p)=1 or 0 or p.

      Counterexamples are easy enough to find:

      n = 79786523; a = 2982522; s = 0; t = 36290422;
      n = 97676723; a = 14888402; s = 0; t = 60052383;

      David
    • djbroadhurst
      ... Here are some scores out of 5: {A(k,x)=sum(j=0,k/2,(-1)^j*binomial(k-j,j)*x^(k-2*j));} {B(k,x)=sum(j=0,(k-1)/2,(-1)^j*binomial(k-j-1,j)*x^(k-2*j-1));}
      Message 66 of 66 , Nov 22, 2012
      • 0 Attachment
        --- In primenumbers@yahoogroups.com,
        paulunderwooduk" <paulunderwood@...> wrote:

        > At least one of the evaluations of x at -1,1,0,-2 or 2
        > should be -1,1,0,-2, or 2

        Here are some scores out of 5:

        {A(k,x)=sum(j=0,k/2,(-1)^j*binomial(k-j,j)*x^(k-2*j));}
        {B(k,x)=sum(j=0,(k-1)/2,(-1)^j*binomial(k-j-1,j)*x^(k-2*j-1));}
        {L=[-1,1,0,-2,2];S=Set(L);for(k=2,40,f=factor(A(k,x)-B(k,x))[,1];
        g=f[#f];c=0;for(j=1,#L,if(setsearch(S,subst(g,x,L[j])),c++));
        print1(c","));}

        4,4,3,4,4,4,4,4,4,4,4,3,4,4,4,5,4,4,4,4,5,4,4,4,4,5,4,4,4,5,5,4,4,4,4,4,5,4,3,

        David
      Your message has been successfully submitted and would be delivered to recipients shortly.