Loading ...
Sorry, an error occurred while loading the content.

2 CONJECTURES for PRIME NUMBERS (now theorems) by Dimitris Valianatos GREECE

Expand Messages
  • Dimitris Valianatos
    Hi Iwould like to give you moreinformation about my conjectures for prime numbers. I will give you2conjecturesforprime numbers, which gave methe idea forthe
    Message 1 of 2 , Jun 23, 2012
    • 0 Attachment
      Hi


      Iwould like to give you moreinformation about my conjectures for prime
      numbers.
      I will give you2conjecturesforprime numbers, which gave methe idea
      forthe twinprimesconjecture.
      (These 2conjecturesI was able toprove,so noware two importanttheorems
      in the theory ofprime numbers. I will send youthe proof.)
      C)
      Firstseethe correlationwith thetwin primes.
      Aswe
      sawthetwin primesare pairs(p1, p2)wherep1, p2are primesp2-p1 = 2
      ande = (p1+p2) / 2isan
      evennumberamong them.
      Thus we have thetriples:(3,4,5),(5,6,7), (11,12,13),​​(17,18,19), (29,30,31), (41,42,43),
      (59,60,61), (71,72,73), ..., (p1, e, p2)
      e -> {4,6,12,18,30,42,60,72, ...}(somenumbers edivisible by3and somewith3and4, ie12).
      andapply therule.
      ife = 0 mod 4orp1 = 3 mod 4  then we form theproductΠp2/p1
      ife
      = 2 mod 4orp1 = 1 mod 4  then we form theproductΠp1/p2
      So my conjecture says that the
      product:
      (3 ^ 2 / 2 ^ 2) * (5 ^ 2 / 3 ^ 2) *
      (5 ^ 2 / 7 ^ 2) * (13 ^ 2 / 11 ^ 2) * (17 ^
      2 / 19 ^ 2) * (41 ^ 2 / 43 ^ 2) *(61 ^ 2 / 59 ^ 2) * (73 ^ 2 / 71 ^ 2) * (101 ^
      2 / 103 ^ 2) * ... =  pi?
       
      3.1887755102040816321 to 1e 1 (3 ^ 2
      / 2 ^ 2 * 5 ^ 2 / 3 ^ 2 * 5 ^ 2 / 7 ^ 2)
      3.2055606708805624550 to 1e 2
      3.1290622219773513145 to 1e 3
      3.1364540609918890779 to 1e 4
      3.1384537326021492746 to 1e 5
      3.1417076006640026373 to 1e 6
      3.1417823471756806475 to 1e 7
      3.1415377533170544536 to 1e 8
      3.1415215264211035597 to 1e 9
      3.1415248453830039795 to 1e 10
      3.1415126339547108140 to 1e 11
      3.1415144504088659201 to 1e 12
      3.1415142045284687040 to 1e 13
      3.1415144719058962626 to 1e 14
      3.1415384423175311229 to 1e 15
       A)
      Whathappensif we takeall pairs(e1, e2)wheree1, e2are even numbers,
      e2-e1 = 2
      andp = (e1 + e2) / 2is a primenumberamong
      them?
      andapply therulein
      the followingtriads?
      (4,5,6), (6,7,8), (​​10,11,12), (12,13,14),(16,17,18), (18,19,20), (22,23,24), (​​28,29,30), (30,31,32),
      (36,37,38), (40,41,42), (42,43,44), (​​46,47,48), ..., (e1, p, e2)
      The rule is:
      ifp = 3 mod 4(ore1 = 2 mod 4)then  we formthe productΠe2/e1
      ifp
      = 1 mod 4(ore1 = 0 mod 4) then  we formthe productΠe1/e2
      B)
      Similarly,what wouldhappenif
      we takeall pairs(e1, e2)wheree1, e2are evens, e2-e1 = 2
      andc = (e1 + e2) / 2is oddcompositenumberamong them?
      (8,9,10),(14,15,16), (20,21,22), (24,25,26), (26,27,28), (32,33,34), (34, 35,36), (38,39,40),
      (44,45,46), ..., (e1,
      c, e2)
      c -> {9,15,21,25,27,33,35,39,45, ...}
      andapply therulein the abovetriads?
      The rule is:
      ifc = 3 mod 4(ore1 = 2 mod 4) then  we formthe productΠe2/e1
      ifc
      = 1 mod 4(ore1 = 0 mod 4) then we formthe productΠe1/e2
      Westart with the last(B).
      Thefirstconjecturesaysthat:
      The product 4 * (8/10) * (16/14) * (20/21) * (24/26) * (28/27) * (32/34) *
      (36/34) * (40/38) *
      * (44/46) * ... = pi = 3.1415926 ....
       
      Butas in the caseof twinprimes,the productis unstable
      and palindromicaroundpiandtheconvergence is slow.
       
      Some analytical results.
      odd composite numbers  
      UBASIC program
         10 word -10: point -10
         20 P1 # = 1: T = 10
         30 for N = 5 to 1000000000 step 2
         35 if N> T then T = T * 10: print P1 # * 4
         40 if prmdiv (N) = N then 60
         50 if N @ 4 = 1 then P1 # = P1 # * (N-1) / (N +1) else P1 # =
      P1 # * (N +1) / (N-1)
         55 'if (N-1) @ 4 = 0 then P1 # = P1 # * (N-1) / (N +1) else P1 # =
      P1 # * (N +1) / (N-1)
         60 next
         70 print P1 # * 4

       3.199999999999999999999999999999999999999999999997 to
      1e1    4 * 8/10     (8,9,10)
       3.279415297767899415305993497227971481399990346715 to 1e2
       3.155979662006539119713526019131092158956361784036 to 1e3
       3.150151075329605914570960459016508173589885261865 to 1e4
       3.143746673647491490494610656405831223203561991418 to 1e5
       3.141609524070628735014614395082987758435483128906 to 1e6
       3.14170482178770497125598436238195628437724160566   to 1e7
       3.141634736105752586243236584305600545831356879616 to 1e8
       3.14160924841725664885331621543307061501208415177   to 1e9

      You see the
      similarities with the conjectureof twin primes.
      Thus began my idea for twin primes.

      The second
      conjecture concerns the (A) case and completes the first conjecture.

      The product
      of:
      (4/6) * (8/6) * (12/10) * (12/14) *
      (16/18) * (20/18) * (24/22) * (28/30) * (32/30) * (36/38) *
      (40/42) * (44/42) * (48/49)* ... = 1
      for each p prime and  p>
      3, p -> {5,7,11,13,17,19,23, ..}


      I believe that, this formula is important.
      This is the MAGIC KEY of primes.

      odd prime numbers
      UBASIC program
         10 word -10: point -10
         20 P1 # = 1: T = 10
         30 for N = 5 to 1000000000 step 2
         35 if N> T then T = T * 10: print P1 #
         40 if prmdiv (N) <> N then 60
         50 if N @ 4 = 1 then P1 # = P1 # * (N-1) / (N +1) else P1 # =
      P1 # * (N +1) / (N-1)
         55 'if (N-1) @ 4 = 0 then P1 # = P1 # * (N-1) / (N +1) else P1 # =
      P1 # * (N +1) / (N-1  
         60 next
         70 print P1 #
        
       0.888888888888888888888888888888888888888888888888
      to 1e1    4/6 * 8/6     (4,5,6),(6,7,8)
       0.96760055745282143922221828990985483378601270138   to 1e2
       0.996437288023449634020415265255177534675786722749 to 1e3
       0.99738290432080346774903552857486476795753303024   to 1e4
       0.999324817106964420775297704764046776745247682675 to 1e5
       0.999995629983132555796907941029579460478280788274 to 1e6
       0.999964397024871668804107586546482512211561065927 to 1e7
       0.999986614898431897369394965700537619210518140771 to 1e8
       0.999994718730256121405086897913065623057935239262 to 1e9
      The productis unstableand palindromicaround1andtheconvergence is slow.
      The proof of the 2 above conjectures are
      easy.
      From all the above, we arrive in lots of
      conclusions.
       
      Lemma 1
      Another proof that prime numbers are infinite.
       
      Chebyshev's
      bias
      The above magic key,
      perhapsanswer thequestion why
      that primes
      congruent to 3 modulo 4 seem to predominate over those congruent to 1
       
      Prime number
      theorem 
       
      Inverse of RH
       
      I'll detail in the next e-mail, because I have
      difficulty with English.
      (Itranslateslowly)
       
      D)
      {An even case (D) that
      required more research to complete the cycle is the following:
      We take all pairs of
      “twin” nonprimesodd numbers (c1, c2)wherec1, c2are pairs of consecutive
      nonprime odd numbers  c2-c1 = 2
      ande = (c1+c2) / 2 isan evennumberamong them.
      Thus we have thetriples:(25,26,27), (33,34,35),
      (49,50,51), (55,56,57), (63,64,65), (75,76,77), (85,86,87), (91,92,93),
      (93,94,95),
      (115,116,117), (117,118,119), (119,120,121), (121,122,123), (123,124,125),
      (133,134,135), (141,142,143),
      (143,144,145),
      (145,146,147), ..., (c1, e, c2)
      e -> {26,34,50,56,64,76,86,92,94,116,118,120,122,124,134,142,144,146,
      ...,e,…}
      (somenumbers edivisible by3and somewith3and4, ie12).
      andapply therule.
      ife = 0 mod 4(orc1 = 3 mod 4)  then we form theproductΠc2/c1
      ife
      = 2 mod 4(orc1 = 1 mod 4)  then we form theproductΠc1/c2
       
      The followingproductis likelyto convergeat??? 2*sqrt(2)/pi =
      0.9003163161571060695… ???
       
      (25/27)*(33/35)*(49/51*(57/56)*(65/64)*(77/75)*(85/87)*(93/91)*(93/95)*(117/119)*…=?
      2*sqrt(2)/pi.}
       
       
      Best regards
      Dimitris Valianatos


      [Non-text portions of this message have been removed]
    • Dimitris Valianatos
      Hi I would like to give you more information about my conjectures for prime numbers. I will give you 2 conjectures for prime numbers, which gave me the idea
      Message 2 of 2 , Jun 23, 2012
      • 0 Attachment
        Hi
        I would like to
        give you more information about my conjectures for prime numbers.
        I will give you
        2 conjectures for prime numbers, which gave me the idea
        for the twin primes conjecture.
        (These 2 conjectures I was able to prove, so now are two important theorems
        in the theory of prime numbers. I will send you the proof.)
        C)
        First see the
        correlation with the twin primes.
        As we saw the twin primes are pairs (p1, p2) where p1, p2 are primes p2-p1 = 2
        and e = (p1+p2) / 2 is an even number among them.
        Thus we have
        the triples: (3,4,5), (5,6,7), (11,12,13), ​​(17,18,19), (29,30,31),
        (41,42,43),
        (59,60,61), (71,72,73), ..., (p1, e, p2)
        e -> {4,6,12,18,30,42,60,72, ...} (some numbers e divisible by 3 and some with
        3 and 4, ie 12).
        and apply the rule.
        if e = 0 mod 4 or
        p1 = 3 mod 4  then we form the product Πp2/p1
        if e = 2 mod 4 or p1 = 1 mod 4  then we form the product Πp1/p2
        So my
        conjecture says that the product:
        (3 ^ 2 / 2 ^
        2) * (5 ^ 2 / 3 ^ 2) * (5 ^ 2 / 7 ^ 2) * (13 ^ 2 / 11 ^ 2) * (17 ^
        2 / 19 ^ 2) * (41 ^ 2 / 43 ^ 2) *(61 ^ 2 / 59 ^ 2) * (73 ^ 2 / 71 ^ 2) * (101 ^
        2 / 103 ^ 2) * ... =  pi?
         
        3.1887755102040816321
        to 1e 1 (3 ^ 2 / 2 ^ 2 * 5 ^ 2 / 3 ^ 2 * 5 ^ 2 / 7 ^ 2)
        3.2055606708805624550 to 1e 2
        3.1290622219773513145 to 1e 3
        3.1364540609918890779 to 1e 4
        3.1384537326021492746 to 1e 5
        3.1417076006640026373 to 1e 6
        3.1417823471756806475 to 1e 7
        3.1415377533170544536 to 1e 8
        3.1415215264211035597 to 1e 9
        3.1415248453830039795 to 1e 10
        3.1415126339547108140 to 1e 11
        3.1415144504088659201 to 1e 12
        3.1415142045284687040 to 1e 13
        3.1415144719058962626 to 1e 14
        3.1415384423175311229 to 1e 15
         A)
        What happens if
        we take all pairs (e1, e2) where e1, e2 are even numbers, e2-e1 = 2
        and p = (e1 + e2) / 2 is a prime number among them?
        and apply the rule in the following triads?
        (4,5,6), (6,7,8), (​​10,11,12), (12,13,14), (16,17,18), (18,19,20), (22,23,24),
        (​​28,29,30), (30,31,32),
        (36,37,38), (40,41,42),
        (42,43,44), (​​46,47,48), ..., (e1, p, e2)
        The rule is:
        if p = 3 mod 4 (or
        e1 = 2 mod 4) then  we form the product Πe2/e1
        if p = 1 mod 4 (or e1 = 0 mod 4) then  we form the product Πe1/e2
        B)
        Similarly, what would happen if we take all pairs (e1, e2) where e1, e2 are evens,
        e2-e1 = 2
        and c = (e1 + e2) / 2 is odd composite number among them?
        (8,9,10), (14,15,16), (20,21,22), (24,25,26), (26,27,28), (32,33,34), (34,
        35,36), (38,39,40),
        (44,45,46),
        ..., (e1, c, e2)
        c -> {9,15,21,25,27,33,35,39,45, ...}
        and apply the rule
        in the above triads?
        The rule is:
        if c = 3 mod 4 (or
        e1 = 2 mod 4) then  we form the product Πe2/e1
        if c = 1 mod 4 (or e1 = 0 mod 4) then  we form the product Πe1/e2
        We start with the last (B).
        The first conjecture
        says that:
        The product  4 * (8/10) * (16/14) * (20/21) * (24/26) * (28/27) * (32/34)
        * (36/34) * (40/38 ) *
        * (44/46) * ... = pi = 3.1415926 ....
         
        But as in the
        case of twin primes, the product is unstable
        and palindromic around piand the convergence is slow.
         
        Some analytical results.
        odd composite
        numbers  
        UBASIC program
           10 word -10: point -10
           20 P1 # = 1: T = 10
           30 for N = 5 to 1000000000 step 2
           35 if N> T then T = T * 10: print P1 # * 4
           40 if prmdiv (N) = N then 60
           50 if N @ 4 = 1 then P1 # = P1 # * (N-1) / (N +1) else P1 # =
        P1 # * (N +1) / (N-1)
           55 'if (N-1) @ 4 = 0 then P1 # = P1 # * (N-1) / (N +1) else P1 # =
        P1 # * (N +1) / (N-1)
           60
        next
           70 print P1 # * 4

         3.199999999999999999999999999999999999999999999997 to
        1e1    4 * 8/10     (8,9,10)
         3.279415297767899415305993497227971481399990346715 to 1e2
         3.155979662006539119713526019131092158956361784036 to 1e3
         3.150151075329605914570960459016508173589885261865 to 1e4
         3.143746673647491490494610656405831223203561991418 to 1e5
         3.141609524070628735014614395082987758435483128906 to 1e6
         3.14170482178770497125598436238195628437724160566   to 1e7
         3.141634736105752586243236584305600545831356879616 to 1e8
         3.14160924841725664885331621543307061501208415177   to 1e9

        You see the similarities with the conjectureof twin primes.
        Thus began my idea for twin primes.

        The second conjecture concerns
        the (A) case and completes the first conjecture.

        The product of:
        (4/6) * (8/6) *
        (12/10) * (12/14) * (16/18) * (20/18) * (24/22) * (28/30) * (32/30) * (36/38) *
        (40/42) *
        (44/42) * (48/49)* ... = 1
        for each p prime and  p>
        3, p -> {5,7,11,13,17,19,23, ..}
         
        I believe that,
        this formula is important.
        This is the MAGIC KEY of primes.

        odd prime numbers
        UBASIC program
           10 word -10: point -10
           20 P1 # = 1: T = 10
           30 for N = 5 to 1000000000 step 2
           35 if N> T then T = T * 10: print P1 #
           40 if prmdiv (N) <> N then 60
           50 if N @ 4 = 1 then P1 # = P1 # * (N-1) / (N +1) else P1 # =
        P1 # * (N +1) / (N-1)
           55 'if (N-1) @ 4 = 0 then P1 # = P1 # * (N-1) / (N +1) else P1 # =
        P1 # * (N +1) / (N-1  
           60
        next
           70 print P1 #
          
         0.888888888888888888888888888888888888888888888888
        to 1e1    4/6 * 8/6     (4,5,6),(6,7,8)
         0.96760055745282143922221828990985483378601270138   to 1e2
         0.996437288023449634020415265255177534675786722749 to 1e3
         0.99738290432080346774903552857486476795753303024   to 1e4
         0.999324817106964420775297704764046776745247682675 to 1e5
         0.999995629983132555796907941029579460478280788274 to 1e6
         0.999964397024871668804107586546482512211561065927 to 1e7
         0.999986614898431897369394965700537619210518140771 to 1e8
         0.999994718730256121405086897913065623057935239262 to 1e9
        The product is
        unstable and palindromic around 1and the convergence is slow.
        The proof of
        the 2 above conjectures are easy.
        From all the
        above, we arrive in lots of conclusions.
         
        Lemma 1
        Another proof
        that prime numbers are infinite.
         
        Chebyshev's bias
        The above magic
        key, perhaps answer the question why
        that primes congruent
        to 3 modulo 4 seem to predominate over those congruent to 1
         
        Prime number
        theorem 
         
        Inverse of RH
         
        I'll detail in
        the next e-mail, because I have difficulty with English.
        (I translate slowly)
         
        D)
        {An even case
        (D) that required more research to complete the cycle is the following:
        We take all
        pairs of “twin” nonprimes odd numbers (c1, c2) where c1, c2 are pairs of
        consecutive nonprime odd numbers  c2-c1 = 2
        and e = (c1+c2)
        / 2 is an even number among them.
        Thus we have
        the triples: (25,26,27), (33,34,35), (49,50,51), (55,56,57), (63,64,65),
        (75,76,77), (85,86,87), (91,92,93),
        (93,94,95),
        (115,116,117), (117,118,119), (119,120,121), (121,122,123), (123,124,125),
        (133,134,135), (141,142,143),
        (143,144,145),
        (145,146,147), ..., (c1, e, c2)
        e -> {26,34,50,56,64,76,86,92,94,116,118,120,122,124,134,142,144,146,
        ...,e,…}
        (some numbers e
        divisible by 3 and some with 3 and 4, ie 12).
        and apply the rule.
        if e = 0 mod 4
        (or c1 = 3 mod 4)  then we form the product Πc2/c1
        if e = 2 mod 4 (or c1 = 1 mod 4)  then we form the product Πc1/c2
         
        The following product
        is likely to converge at???
        2*sqrt(2)/pi = 0.9003163161571060695… ???
         
        (25/27)*(33/35)*(49/51*(57/56)*(65/64)*(77/75)*(85/87)*(93/91)*(93/95)*(117/119)*…=?
        2*sqrt(2)/pi.}
         
         
        Best regards
        Dimitris
        Valianatos


        [Non-text portions of this message have been removed]
      Your message has been successfully submitted and would be delivered to recipients shortly.