- --- In primenumbers@yahoogroups.com, "paulunderwooduk" <paulunderwood@...> wrote:
>

I made a big mistake with negation in my tests, so that tests 2-5 are not necessary. However, test 1. stands without any known counterexample found by me yet. I can re-write it slightly differently

>

>

> --- In primenumbers@yahoogroups.com, "paulunderwooduk" <paulunderwood@> wrote:

> >

> >

> >

> > --- In primenumbers@yahoogroups.com, "paulunderwooduk" <paulunderwood@> wrote:

> > >

> > > Sorry about the SN ratio....

> > >

> > > I now have the following composite tests for which I would like to know their selfridge values:

> > >

> > > 1. for kronecker(5,n)==-1:

> > > Mod(Mod(1,n)*(l^2-2),l^2-3*l+1)^(n+1)+9==0

> > >

> > > 3. for n==9 (mod 10):

> > > Mod(Mod(1,n)*(l^2-2),l^2-3*l+1)^((n+1)/2)+3*l-3==0

> > >

> > > 4. for n==9 (mod 10) or n==11 (mod 20):

> > > Mod(Mod(1,n)*(l^2-2),l^2-3*l+1)^((n+1)/2)+3*l-3==0

> > >

> > > (gcd(n,30)==1)

> > >

> >

> > 5. kronecker(5,n)==1 and n!=1 (mod 60)

> > Mod(Mod(1,n)*(l^2-2),l^2-3*l+1)^((n+1)/2)+3*l-3==0

> >

> > 1. and 5. have been checked against Richard Pinch's Carmichael numbers list for n less than 10^16,

> >

>

> 5. fails for some numbers in Pinch's 2-PSP list (n<10^12) which are 41 mod(60) ... so that leaves 11,21,31,51 mod(60)?

>

1b. for kronecker(5,n)==-1:

Mod(Mod(1,n)*3*(l-1),l^2-3*l+1)^(n+1)+9==0

Paul - --- In primenumbers@yahoogroups.com, "paulunderwooduk" <paulunderwood@...> wrote:
>

Combining fails with the composite counterexample n=256999 and x=32768, However, I have tested the 1+1+1+2 conjecture up to n<10^7,

>

>

> --- In primenumbers@yahoogroups.com, "paulunderwooduk" <paulunderwood@> wrote:

> >

> > Hi,

> >

> > I have added a Fermat test to make a 1+1+1+2 selfridge test:

> >

> > For N>5, with gcd(6,N)==1, find an integer x:

> > gcd(x^3-x,N)==1

> > kronecker(x^2-4,N)==-1

> >

> > and check:

> > (x+2)^((N-1)/2)==kronecker(x+2,N) (mod N) (Euler)

> > (x-2)^((N-1)/2)==kronecker(x-2,N) (mod N) (Euler)

> > x^(N-1)==1 (mod N) (Fermat)

> > L^(N+1) == 1 (mod N, L^2-x*L+1) (Lucas)

> >

>

> Note: I should say gcd(30,N)==1 because gcd(x^3-x,N)==1 and kronecker(x^2-4,n)==-1.

>

> Re: http://tech.groups.yahoo.com/group/primenumbers/message/24090?l=1

>

> Now consider combining the 2 Euler tests with the Lucas test:

>

> (L*D)^((n+1)/2)==D (mod N, L^2-x*L+1) (D=x^2-4.)

>

> with the restriction kronecker(x+2,N)==-1.

>

> These together with the Fermat test makes for a 1+2-selfridge test.

>

> Can you find a counterexample?

>

> So far the near-refutation from Pinch's carmichael list is:

> N,x,gcd(x^2-1)

> ------------------

> 1909001 884658 1909001

>

> Paul

>

Paul -- restoring symmetry