Thx, I will rework it.

________________________________

From: Tom Hadley <

kctom99@...>

To: Mathieu Therrien <

mathieu344@...>

Cc: "

primenumbers@yahoogroups.com" <

primenumbers@yahoogroups.com>

Sent: Thursday, July 14, 2011 4:41:26 PM

Subject: Re: [PrimeNumbers] Post-Cartesian Puzzle

Mathieu Therrien <

mathieu344@...> wrote:

>

>If I understood the purpose of Sigma(N/M) = N/P_1 = M*P_2 for P = P_1 * P_2 correctly,

>

>then Many solution are possibles as long as (M+1) is divided by 2 only once

>

>for example u have m=5 ; N = P_2 * m * 3 = 15*P_2 and as long that P_2 is odd

>

>So m=5 and N=45 is 1 solution

>

>

I think you have misunderstood the sigma() function. In Pari-GP, sigma(x) is the sum of the divisors of x. So sigma(9) = 1+3+9 = 13.

The puzzle is: Find a pair of odd integers (N,m) with m|N,

sigma(N/m)*(1+m) = 2*N, and bigomega(m) = 1.

The proposed solution, N=45, m=5 doesn't work, since

sigma(45/5)*(1+5) = sigma(9)*6 = 13*6 = 78, which is not 2*N=2*45=90.

Tom Hadley

[Non-text portions of this message have been removed]