## Re: [PrimeNumbers] Re: Prime chains x-->Ax+B [puzzle 2]

Expand Messages
• ... Well, multiplying by 18 and then adding a constant tends to keep your residue modulo 18 pretty constant. Phil
Message 1 of 143 , Nov 26 9:50 AM
• 0 Attachment
--- On Thu, 11/25/10, Kevin Acres <research@...> wrote:
> [1, 1087, 1, 1, Mat([1087, 1])]
> [2, 18212081, 5, 1, Mat([18212081, 1])]
> [3, 346009973, 5, 1, Mat([346009973, 1])]
> [4, 6246372029, 5, 1, Mat([6246372029, 1])]
> [5, 112452889037, 5, 1, Mat([112452889037, 1])]
> [6, 2024170195181, 5, 1, Mat([2024170195181, 1])]
> [7, 36435081705773, 5, 1, Mat([36435081705773, 1])]
> [8, 655831488896429, 5, 1, Mat([655831488896429, 1])]
> [9, 11804966818328237, 5, 1, Mat([11804966818328237, 1])]
> [10, 212489402748100781, 5, 1, Mat([212489402748100781, 1])]
> [11, 3824809249484006573, 5, 1, Mat([3824809249484006573, 1])]
> [12, 68846566490730310829, 5, 1, Mat([68846566490730310829, 1])]
> [13, 1239238196833163787437, 5, 1, Mat([1239238196833163787437, 1])]
> [14, 22306287542996966366381, 5, 1, Mat([22306287542996966366381, 1])]
> [15, 401513175773945412787373, 5, 1, Mat([401513175773945412787373, 1])]
> [16, 7227237163931017448365229, 5, 0, [43, 1; 4817, 1; 34892107718936409559, 1]]
> [17, 130090268950758314088766637, 5, 0, [17, 1; 7652368761809312593456861, 1]]
>
> BTW both 15/16 chains are all 5 mod 6 expect for the first value
> which is 1 mod 6.
>
> Is there anyone that can tell me if I should read anything
> in to this or not?

Well, multiplying by 18 and then adding a constant tends to keep your residue modulo 18 pretty constant.

Phil
• ... Suppose that we want to start with a square and get a square. Then we must solve the Diophantine equation y^2 = a*x^2 + b For any pair (a,b), Dario will
Message 143 of 143 , Jan 7, 2011
• 0 Attachment