--- On Thu, 11/25/10, Kevin Acres <

research@...> wrote:

> [1, 1087, 1, 1, Mat([1087, 1])]

> [2, 18212081, 5, 1, Mat([18212081, 1])]

> [3, 346009973, 5, 1, Mat([346009973, 1])]

> [4, 6246372029, 5, 1, Mat([6246372029, 1])]

> [5, 112452889037, 5, 1, Mat([112452889037, 1])]

> [6, 2024170195181, 5, 1, Mat([2024170195181, 1])]

> [7, 36435081705773, 5, 1, Mat([36435081705773, 1])]

> [8, 655831488896429, 5, 1, Mat([655831488896429, 1])]

> [9, 11804966818328237, 5, 1, Mat([11804966818328237, 1])]

> [10, 212489402748100781, 5, 1, Mat([212489402748100781, 1])]

> [11, 3824809249484006573, 5, 1, Mat([3824809249484006573, 1])]

> [12, 68846566490730310829, 5, 1, Mat([68846566490730310829, 1])]

> [13, 1239238196833163787437, 5, 1, Mat([1239238196833163787437, 1])]

> [14, 22306287542996966366381, 5, 1, Mat([22306287542996966366381, 1])]

> [15, 401513175773945412787373, 5, 1, Mat([401513175773945412787373, 1])]

> [16, 7227237163931017448365229, 5, 0, [43, 1; 4817, 1; 34892107718936409559, 1]]

> [17, 130090268950758314088766637, 5, 0, [17, 1; 7652368761809312593456861, 1]]

>

> BTW both 15/16 chains are all 5 mod 6 expect for the first value

> which is 1 mod 6.

>

> Is there anyone that can tell me if I should read anything

> in to this or not?

Well, multiplying by 18 and then adding a constant tends to keep your residue modulo 18 pretty constant.

Phil