> > The original poster seemed to write 512 where he means 2^10.

Found both of those now:

> >

> > It is (2^1024+3^1024)/2330249132033 that has 477 digits

> > and is not factorized at Paul's fine site.

> http://www1.uni-hamburg.de/RRZ/W.Keller/GFNsmall.html gives one more prime

> factor: 10176954088500686156890644481 and remains c449.

[2010-10-25 10:16:35 GMT] n10: probable factor returned by

paul@... (mesh_4:v2.0k)! Factor=2330249132033 Method=ECM

B1=250000 Sigma=90206226

[2010-10-25 10:16:35 GMT] n10: Composite factor returned by

paul@...!

Factor=160236879228127195164826503514143273848644887617419237583589880672819224787962378613168358191054320882014589878763655598739442603012525981141289393946718413503071756942365084833216516319583697404684336969516432404909365911461501691450758224189677519380661024336610343945039247522150954814862123259434023865815579858133945351151726697231584694926774191784591080286025985084327594874779310399776681428659805398074761131932929563211305463464053349254128040769205414113291414263809 Method=ECM B1=250000 Sigma=90206226

[2010-10-25 12:33:42 GMT] n10_1: probable factor returned by pcl@anubis

(anubis5)! Factor=10176954088500686156890644481 Method=ECM B1=250000

Sigma=1927001934

[2010-10-25 12:33:42 GMT] n10_1: Composite factor returned by

pcl@anubis!

Factor=15745072428810966584413689569028050952121723170588717492356803041962045543719421466634314626515681367806038954950649466918177284600127897807223229616734493963870994176961152031838265180914651227518129736337432709373581447583480385668299052789615157720829985754126147818607443036795542666041266727368967991929574179247057328372407884419914237683940826611054069893545018041498309020902084444177674786383308058081865530163424306601965434254433964505089 Method=ECM B1=250000 Sigma=1927001934

I'll leave it in the ECMserver for the moment as it is being given a

relatively small fraction of my resources.

Paul