Expand Messages
• David, while I ll deal with your comment, look at the additional condition Additional condition (m) - Prime number m_p P_n^2
Message 1 of 2 , Jul 8, 2010
• 0 Attachment
David, while I'll deal with your comment, look at the additional condition
(m) - Prime number m_p
P_n^2<m_p<P_(n+1)^2
P_n - Primes
n – prime number
m*P_(n+1)/P(n+1)-1=m_1
The interval (m_p, m_1)
One prime 90% of cases, all decisions
0 or 2 primes of 10% of cases, all decisions
• ... {forprime(m=2,300, p=nextprime(ceil(sqrt(m))); m1=floor(m*p/(p-1));v=[]; forprime(q=m+1,m1,v=concat(v,q)); if(#v 2,print([m,v])));} [101, [103, 107, 109]]
Message 2 of 2 , Jul 8, 2010
• 0 Attachment
<chitatel2000@...> wrote:

> (m) - Prime number m_p
> P_n^2<m_p<P_(n+1)^2
> P_n - Primes
> n â" prime number
> m*P_(n+1)/P(n+1)-1=m_1
> The interval (m_p, m_1)
> One prime 90% of cases, all decisions
> 0 or 2 primes of 10% of cases, all decisions

{forprime(m=2,300,
p=nextprime(ceil(sqrt(m)));
m1=floor(m*p/(p-1));v=[];
forprime(q=m+1,m1,v=concat(v,q));
if(#v>2,print([m,v])));}

[101, [103, 107, 109]]
[103, [107, 109, 113]]
[191, [193, 197, 199]]
[223, [227, 229, 233]]
[227, [229, 233, 239, 241]]
[229, [233, 239, 241]]
[257, [263, 269, 271]]
[263, [269, 271, 277]]
[269, [271, 277, 281, 283]]
[271, [277, 281, 283]]
[277, [281, 283, 293]]

David
Your message has been successfully submitted and would be delivered to recipients shortly.