³Convergence². The answers such as yours, and I have received several, have

a life of their own, far removed from the original intent. It is amazing how

the world relates to and is influenced by the concept of prime numbers. Your

interest is appreciated. Marty

From: Mark <mark.underwood@...>

Date: Tue, 22 Jun 2010 18:08:27 -0000

To: <peter_boos@yahoogroups.com>

Subject: [PrimeNumbers] Re: Prime numbers in math.

--- In primenumbers@yahoogroups.com <mailto:primenumbers%40yahoogroups.com>

, "Peter_Boos" <peter_boos@...>

wrote:>

and follow their own order in math. not really related to our visual

> what we observe in nature we call physics.

> what we see in physics, follows the rules of math.

>

> Above here i wrote down relation to the outside world and math.

> What i am curious of, prime numbers certainly have a clear formulation

perception, but there is a clear definition prime numbers are no random

numbers. Since prime numbers have their use to us.> And they contain special properties, in math in general.

A few years ago I received a book as a gift: The Music of the Primes by

>

> How does this reflect backwards in physics, or nature ?

>

> has anyone observed prime numbers, in physics, or nature ?.

Marcus du Sautoy.

Below is an an excerpt from page 285-286 which you might find

interesting!

Mark

The power of the analogy between the Riemann zeros and quantum physics

is twofold. First, it tells us where we should be looking for a solution

to the Riemann Hypothesis. And second, as Keating had now proved, it can

predict other properties of Riemann's landscape. ... Even if the

physicists can't come up with a physical model that generates zeros,

mathematicians admit that it could well be a physicist who finally

proves the Riemann Hypothesis. ....

The physicists believe that the reason Riemann's zeros will be in a

straight line is that they will turn out to be frequencies of some

mathematical drum. A zero off the line would correspond to an imaginary

frequency which was prohibited by the theory. It was not the first time

that such an argument had been used to answer a problem. Keating, Berry

and other physicists learnt as students about a classical problem in

hydrodynamics whose solution depends on similar reasoning. The problem

concerns a spinning ball of fluid held together by the mutual

gravitational interactions of the particles inside it. For example, a

star is a ball of spinning gas kept together by its own gravity. The

question is, what happens to the spinning ball of fluid if you give it a

small kick? Will the fluid wobble briefly and remain intact, or will the

small kick destroy the ball completely? The answer depends on showing

why certain imaginary numbers lie in a straight line. If they do, the

spinning ball of fluid will remain intact. The reason why these

imaginary numbers do indeed line up is related very closely to the

quantum physicists' ideas about proving the Riemann Hypothesis. Who

discovered this solution? Who used the mathematics of vibrations to

force these imaginary numbers onto a straight line? No other than

Bernhard Riemann.>

[Non-text portions of this message have been removed]

[Non-text portions of this message have been removed]