## Re: [PrimeNumbers] Re: a*x^n+b*y^n puzzle

Expand Messages
• ... I had misread the problem. I was thinking that a, b, x, and y had to be prime as well.
Message 1 of 37 , Nov 27, 2009
• 0 Attachment
>
> --- In primenumbers@yahoogroups.com, <mgrogue@...> wrote:
>
> > > a=b=x=y=1;n_max=infinity
>
> > Is 1 considered a prime number?
>
> Where I come from, 1 is an integer and
> 1+1 is a prime, precisely as requested.
>
> David

I had misread the problem. I was thinking that a, b, x, and y had to be prime as well.
• ... There is only rational prime of the form a^2 + b^2 that yields precisely 4 distinct Gaussian primes, namely 2 = 1^2 + 1^2. If a^2 + b^2 is an odd rational
Message 37 of 37 , Dec 5, 2009
• 0 Attachment
"Robdine" <robdine@...> wrote:

> any rational prime that can be represented by the sum
> of 2 squares (a^2+b^2) will define 4 gaussian primes

There is only rational prime of the form a^2 + b^2 that yields
precisely 4 distinct Gaussian primes, namely 2 = 1^2 + 1^2.

If a^2 + b^2 is an odd rational prime, we have
8 [sic] asociates of the Gaussian prime z = a + I*b,
since we may mulitply it and its conjugate z = a - I*b
by the 4 units I, -I, -1, 1, obtaining 8 distinct
Gaussian integers that are prime.

David
Your message has been successfully submitted and would be delivered to recipients shortly.