Loading ...
Sorry, an error occurred while loading the content.

Re: [PrimeNumbers] Dimostrazione geometrica

Expand Messages
  • Adriano Palma
    ** Proprietary ** ** High Priority ** Sir, your so-called proof is utterly incomprehensible. In order to avoid further linguistic chaos you are kindly
    Message 1 of 4 , Oct 23, 2009
    • 0 Attachment
      ** Proprietary **
      ** High Priority **

      Sir, your so-called proof is utterly incomprehensible.
      In order to avoid further linguistic "chaos" you are kindly invited to
      exhibit the ration of the form x/y, where x and y are integers such
      x/y times x/y equals 2. That is the only way you have to prove your
      claim. If you achieve that geometrically, set theoretically or
      algebraically is an interesting but, to be sure, secondary issue, given
      the magnitude of what you claim to have discovered.

      ξε ν’, γγέλλειν Λακεδαιμονίοις ἀ ὅτι τ δε
      κείμεθα, το ς κείνων ῥήμασι πειθόμενοι.
      /begin/read__>sig.file: postal address
      University of KwaZulu-Natal Philosophy
      3rd floor of Memorial Tower Building
      Howard College Campus
      Durban 4041
      South Africa
      Tel off: [+27] 031 2601591 (sec: Mrs. Yolanda Hordyk) [+27]
      Fax [+27] 031-2603031
      mobile 07 62 36 23 91 calling from overseas +[27] 76 2362391
      EMAIL: palma@...
      EMAIL: palma@...
      MY OFFICE # IS 290@Mtb
      *only when in Europe*: inst. J. Nicod
      29 rue d'Ulm
      f-75005 paris france
      email me for details if needed at palma@...
      This e-mail message (and attachments) is confidential, and/or
      privileged and is intended for the
      use of the addressee only. If you are not the intended recipient of
      this e-mail you must not copy,
      distribute, take any action in reliance on it or disclose it to anyone.
      Any confidentiality or
      privilege is not waived or lost by reason of mistaken delivery to you.
      This entity is not responsible for any information not related to the
      business of this entity. If you
      received this e-mail in error please destroy the original and notify
      the sender.

      >>> "Edgar J. Delpero." <edgar_james2002@...> 10/22/2009 9:19 PM

      La somma dei triangoli rettangoli Aurii costruito nei cateti, divisi
      per due è uguale all'area del triagolo rettangolo costruito
      sull'ipotenusa o diagonali.

      Esempio: n=2 geometrica dimostrazione.
      h=1 e b=1=1^2
      d=1.414213562..., allora i due rettangoli Aureii addizionati sono
      uguali alla diagonale, ovvero (h+b)^3.
      h=1.414213562..., b=1.41421356
      Allora, [(h+b)^3]/2 = Area=d sostanzialmente, il valore dell'area è
      uguale al valore della diagonale.
      Conclussione: esistono due numeri m>n, tale che m/n siano uguali
      all'area ed all'ipotenusa o diagonale:m>n, tale che m/n=A=d.
      Ruotine :
      per m ed n =m/n.
      n=(125226845)/RADQ2 =88548751.3


      importante collocare al numeratore qualsiasi numero "primo" o della
      forma 2n-1, e al denominatore RADQn cercata.
      La dimostrazione si può scrivere infinite volte !!!..,
      m= 127 important "primenumber o 2n-1".
      Posso fare anche una dimostrazione biunivoca del tipo Cantoriana.
      D'altro canto per ogni numero irrazionale vi sono due numeri m/n=RADQx


      Do You Yahoo!?
      Poco spazio e tanto spam? Yahoo! Mail ti protegge dallo spam e ti da
      tanto spazio gratuito per i tuoi file e i messaggi
      http://mail.yahoo.it ( http://mail.yahoo.it )

      [Non-text portions of this message have been removed]

      Please find o
      ur Email Disclaimer here: http://www.ukzn.ac.za/disclaimer/

      [Non-text portions of this message have been removed]
    Your message has been successfully submitted and would be delivered to recipients shortly.