Hi All,

A gigantic cousin pair (to go with the sexy pair)

((8907956*35+16)*587502*9001#*(587502*9001#+1)+210)*(587502*9001#-1)/35+1

((8907956*35+16)*587502*9001#*(587502*9001#+1)+210)*(587502*9001#-1)/35+5

with 11594 digitS

Primality testing ((8907956*35+16)*587502*9001#*(587502*9001#+1)+210)*(587502*9001#-1)/35+1 [N-1, Brillhart-Lehmer-Selfridge]

Running N-1 test using base 2

Calling Brillhart-Lehmer-Selfridge with factored part 33.32%

Proof incomplete rerun with -x41241

((8907956*35+16)*587502*9001#*(587502*9001#+1)+210)*(587502*9001#-1)/35+1 is PRP! (19.4720s+0.0029s)

rerunning as instructed yields

Primality testing ((8907956*35+16)*587502*9001#*(587502*9001#+1)+210)*(587502*9001#-1)/35+1 [N-1, Brillhart-Lehmer-Selfridge]

Running N-1 test using base 2

Calling Brillhart-Lehmer-Selfridge with factored part 33.32%

1/41240

8193/41240

16385/41240

24577/41240

32769/41240

40961/41240

((8907956*35+16)*587502*9001#*(587502*9001#+1)+210)*(587502*9001#-1)/35+1 is prime! (30.4132s+0.0024s)

Primality testing ((8907956*35+16)*587502*9001#*(587502*9001#+1)+210)*(587502*9001#-1)/35+5 [N-1/N+1, Brillhart-Lehmer-Selfridge]

Running N-1 test using base 9007

Running N+1 test using discriminant 9013, base 1+sqrt(9013)

Running N+1 test using discriminant 9013, base 2+sqrt(9013)

Calling N+1 BLS with factored part 33.34% and helper 0.01% (100.02% proof)

((8907956*35+16)*587502*9001#*(587502*9001#+1)+210)*(587502*9001#-1)/35+5 is prime! (279.4887s+0.0025s)

Cheers

Ken