Hi, prime folks,

Primes from permutation of prime digits

=======================================

For each prime p, define perm(p) =

number of permutations of digits of p which give primes

(including p itself).

Some examples:

perm(2)=1

perm(1097)=10: ten primes

{179, 197, 719, 971, 1097, 1709, 1907, 7019, 7109, 7901}

(note some primes arise from permutations with leading zeroes:

0179=>179, 0197=>197, etc.)

perm(1006991)=100: hundred primes

{11699,11969,19961,...9906101,9910601,9960101}

perm(12338449)=1000: thousand primes

{12338449, 12394483,12394843,...,98432413,98433241, 98433421}

We have the next table of

minimal primes p with given perm:

{perm,p)

{1,2}

{10,1097}

{100,1006991}

{1000,12338449}

{10000,??}

{100000,??}

any1 wish to extend this?

thx, zak