## Prime Chain of 224

Expand Messages
• This is a Prime Chain of 224 terms consisting of the output of 2x^2 +29 repeated four times, alternating with these same terms in reverse within a procedural
Message 1 of 1 , Jul 12, 2008
This is a Prime Chain of 224 terms consisting of the output of
2x^2 +29 repeated four times, alternating with these same terms
in reverse within a procedural expression of a single polynomial.

31, 31, 31, 31, 1597, 1597,
1597, 1597, 37, 37, 37,
37, 1487, 1487, 1487, 1487,
47, 47, 47, 47, 1381,
1381, 1381, 1381, 61, 61,
61, 61, 1279, 1279, 1279,
1279, 79, 79, 79, 79,
1181, 1181, 1181, 1181, 101,
101, 101, 101, 1087, 1087,
1087, 1087, 127, 127, 127,
127, 997, 997, 997, 997,
157, 157, 157, 157, 911,
911, 911, 911, 191, 191,
191, 191, 829, 829, 829,
829 229 229 229 229
751 751 751 751 271
271, 271, 271, 677, 677,
677, 677, 317, 317, 317,
317, 607, 607, 607 607,
367, 367, 367, 367, 541,
541, 541, 541, 421, 421,
421, 421, 479, 479, 479
479, 479, 479, 479, 479....

The Pascal procedure below should run as an import in several
programming environments.

procedure Ndegrees6;
var a : array[0..16] of extended;
ct: longint;
n,nh ,i,j : integer;
ab1,ab2 : extended;
begin
for i := 0 to 16 do
a[i] := 0;
N := 16;
a[0] := 31{ FIRST TERM OF PRIME CHAIN};
writeln('1');
writeln(trunc(a[0]));
writeln;
nh := 1;
a[1] := 31 ;a[2] := 31 ;a[3] := 31 ;a[4] := 1597 ;
a[5] := 1597 ;a[6] := 1597;a[7] := 1597 ; a[8] := 37 ;
a[9] := 37 ;a[10] := 37 ;a[11] := 37 ;a[12] := 1487 ;
a[13] := 1487 ;a[14] := 1487; a[15] := 1487 ;a[16] := 47;

repeat
for i := N downto nh do
begin
a[i] := a[i] - a[i-1] ;
IF NH = 3 THEN A[I] := abs(A[I]); {*******}
IF NH = 3 THEN A[I] := abs(A[I]); {}
IF NH = 4 THEN A[I] := abs(A[I]); {}
IF NH = 7 THEN A[I] := abs(A[I]); {}
IF NH = 8 THEN A[I] := abs(A[I]); {}
IF NH = 10 THEN A[I] := abs(A[I]); {}
IF NH = 12 THEN A[I] := abs(A[I]); {}
IF NH = 15 THEN A[I] := abs(A[I]); {}
IF NH = 16 THEN A[I] := -abs(A[I]); {}
end;
nh := nh + 1;
until nh = n + 2;
ct := 0;
repeat
ct := ct + 1;
ab1 := a[n] + a[n-1];
for i := N-1 downto 1 do
begin
ab2 := a[i] + a[i-1] ;
a[i] := ab1;
ab1 := ab2;
end;
a[16] := -a[16];
if odd(ct) then A[15] := -A[15];{}
if odd(ct+1) then A[14] := -A[14];{}
if odd(ct) then A[12] := -A[12];{}
if ct mod 4 = 3 then A[9] := -A[9];{}
if ct mod 4 = 2 then A[8] := -A[8];{}
A[7] := -A[7];{}
if ct mod 4 = 3 then A[5] := -A[5];{}
if ct mod 4 = 2 then A[4] := -A[4];{}
if ct mod 4 = 2 then A[2] := -A[2];{}
if ct mod 4 = 3 then A[2] := -A[2];{}
if ct mod 4 = 3 then A[1] := -A[1];{}

a[0] := ab1;
writeln(ct + 1);
writeln(trunc(a[0]));{}