Loading ...
Sorry, an error occurred while loading the content.

for clarification

Expand Messages
  • Suresh Batta
    I have found this: if n = {1,2,3..., infinite}, n^2 + (n -/+ x) is prime where, x = {1,2,4,6,8,10...} Want to know if its known or of any use. I am not working
    Message 1 of 3 , Apr 10, 2005
    • 0 Attachment
      I have found this:

      if n = {1,2,3..., infinite},

      n^2 + (n -/+ x) is prime where,

      x = {1,2,4,6,8,10...}

      Want to know if its known or of any use. I am not working on any
      proof.

      Suresh
    • Décio Luiz Gazzoni Filho
      ... Really? If you remove 1 from your set x, can you provide me with any examples of primes of this form? *No* bonus points if you can prove why you ll always
      Message 2 of 3 , Apr 10, 2005
      • 0 Attachment
        On Sunday 10 April 2005 23:13, you wrote:
        > I have found this:
        >
        > if n = {1,2,3..., infinite},
        >
        > n^2 + (n -/+ x) is prime where,
        >
        > x = {1,2,4,6,8,10...}

        Really? If you remove 1 from your set x, can you provide me with any examples
        of primes of this form?

        *No* bonus points if you can prove why you'll always be unsuccesful, because
        the proof is so very trivial.

        Décio


        [Non-text portions of this message have been removed]
      • Suresh Batta
        As a followup to previous post I am posting some data here. n p x 1 1 - 1 2 5 - 1 3 11 - 1 4 19 - 1 5 29 - 1 6
        Message 3 of 3 , Apr 27, 2005
        • 0 Attachment
          As a followup to previous post I am posting some data here.

          n p x
          1 1 - 1
          2 5 - 1
          3 11 - 1
          4 19 - 1
          5 29 - 1
          6 41 - 1
          7 53 - 3
          8 71 - 1
          9 89 - 1
          10 109 - 1
          11 131 - 1
          12 157 + 1
          13 181 - 1
          14 211 + 1
          15 239 - 1
          16 271 - 1
          17 307 + 1
          18 337 - 5
          19 379 - 1
          20 419 - 1
          21 461 - 1
          22 503 - 3
          23 547 - 5
          24 599 - 1
          25 647 - 3
          26 701 - 1
          27 757 + 1
          28 811 - 1
          29 863 - 7
          30 929 - 1
          31 991 - 1
          32 1051 - 5
          33 1123 + 1
          34 1187 - 3
          35 1259 - 1
          36 1327 - 5
          37 1409 + 3
          38 1481 - 1
          39 1559 - 1
          40 1637 - 3
          41 1721 - 1
          42 1801 - 5
          43 1889 - 3
          44 1979 - 1
          45 2069 - 1
          46 2161 - 1
          47 2251 - 5
          48 2351 - 1
          49 2447 - 3
          50 2549 - 1
          51 2647 - 5
          52 2753 - 3
          53 2861 - 1
          54 2969 - 1
          55 3079 - 1
          56 3191 - 1
          57 3307 + 1
          58 3413 - 9
          59 3539 - 1
          60 3659 - 1
          61 3779 - 3
          62 3907 + 1
          63 4027 - 5
          64 4159 - 1
          65 4289 - 1
          66 4421 - 1
          67 4561 + 5
          68 4691 - 1
          69 4831 + 1
          70 4969 - 1
          71 5113 + 1
          72 5261 + 5
          73 5399 - 3
          74 5557 + 7
          75 5701 + 1
          76 5851 - 1
          77 6007 + 1
          78 6163 + 1
          79 6317 - 3
          80 6481 + 1
          81 6637 - 5
          82 6803 - 3
          83 6971 - 1
          84 7129 - 11
          85 7309 - 1
          86 7481 - 1
          87 7649 - 7
          88 7829 - 3
          89 8009 - 1
          90 8191 + 1
          91 8369 - 3
          92 8563 + 7
          93 8741 - 1
          94 8929 - 1
          95 9127 + 7
          96 9311 - 1
          97 9511 + 5
          98 9697 - 5
          99 9901 + 1
          100 10099 - 1
          101 10301 - 1
          102 10501 - 5
          103 10711 - 1
          104 10909 - 11
          105 11131 + 1
          106 11351 + 9
          107 11551 - 5
          108 11777 + 5
          109 11987 - 3
          110 12211 + 1
          111 12433 + 1
          112 12653 - 3
          113 12889 + 7
          114 13109 - 1
          115 13339 - 1
          116 13567 - 5
          117 13807 + 1
          118 14033 - 9
          119 14281 + 1
          120 14519 - 1
          121 14759 - 3
          122 15013 + 7
          123 15259 + 7
          124 15497 - 3
          125 15749 - 1
          126 16001 - 1
          127 16253 - 3
          128 16519 + 7
          129 16763 - 7
          130 17029 - 1
          131 17291 - 1
          132 17551 - 5
          133 17827 + 5
          134 18089 - 1
          135 18353 - 7
          136 18637 + 5
          137 18911 + 5
          138 19181 - 1
          139 19457 - 3
          140 19739 - 1
          141 20021 - 1
          142 20297 - 9
          143 20593 + 1
          144 20879 - 1
          145 21169 - 1
          146 21467 + 5
          147 21757 + 1
          148 22051 - 1
          149 22349 - 1
          150 22651 + 1

          p = n^2 + (n +/- x) seems to be asymptotically varying with x, which
          belongs to a set of odd integers.

          Suresh

          --- In primenumbers@yahoogroups.com, Décio Luiz Gazzoni Filho
          <decio@d...> wrote:
          > On Sunday 10 April 2005 23:13, you wrote:
          > > I have found this:
          > >
          > > if n = {1,2,3..., infinite},
          > >
          > > n^2 + (n -/+ x) is prime where,
          > >
          > > x = {1,2,4,6,8,10...}
          >
          > Really? If you remove 1 from your set x, can you provide me with
          any examples
          > of primes of this form?
          >
          > *No* bonus points if you can prove why you'll always be
          unsuccesful, because
          > the proof is so very trivial.
          >
          > Décio
          >
          >
          > [Non-text portions of this message have been removed]
        Your message has been successfully submitted and would be delivered to recipients shortly.