## for clarification

Expand Messages
• I have found this: if n = {1,2,3..., infinite}, n^2 + (n -/+ x) is prime where, x = {1,2,4,6,8,10...} Want to know if its known or of any use. I am not working
Message 1 of 3 , Apr 10, 2005
I have found this:

if n = {1,2,3..., infinite},

n^2 + (n -/+ x) is prime where,

x = {1,2,4,6,8,10...}

Want to know if its known or of any use. I am not working on any
proof.

Suresh
• ... Really? If you remove 1 from your set x, can you provide me with any examples of primes of this form? *No* bonus points if you can prove why you ll always
Message 2 of 3 , Apr 10, 2005
On Sunday 10 April 2005 23:13, you wrote:
> I have found this:
>
> if n = {1,2,3..., infinite},
>
> n^2 + (n -/+ x) is prime where,
>
> x = {1,2,4,6,8,10...}

Really? If you remove 1 from your set x, can you provide me with any examples
of primes of this form?

*No* bonus points if you can prove why you'll always be unsuccesful, because
the proof is so very trivial.

Décio

[Non-text portions of this message have been removed]
• As a followup to previous post I am posting some data here. n p x 1 1 - 1 2 5 - 1 3 11 - 1 4 19 - 1 5 29 - 1 6
Message 3 of 3 , Apr 27, 2005
As a followup to previous post I am posting some data here.

n p x
1 1 - 1
2 5 - 1
3 11 - 1
4 19 - 1
5 29 - 1
6 41 - 1
7 53 - 3
8 71 - 1
9 89 - 1
10 109 - 1
11 131 - 1
12 157 + 1
13 181 - 1
14 211 + 1
15 239 - 1
16 271 - 1
17 307 + 1
18 337 - 5
19 379 - 1
20 419 - 1
21 461 - 1
22 503 - 3
23 547 - 5
24 599 - 1
25 647 - 3
26 701 - 1
27 757 + 1
28 811 - 1
29 863 - 7
30 929 - 1
31 991 - 1
32 1051 - 5
33 1123 + 1
34 1187 - 3
35 1259 - 1
36 1327 - 5
37 1409 + 3
38 1481 - 1
39 1559 - 1
40 1637 - 3
41 1721 - 1
42 1801 - 5
43 1889 - 3
44 1979 - 1
45 2069 - 1
46 2161 - 1
47 2251 - 5
48 2351 - 1
49 2447 - 3
50 2549 - 1
51 2647 - 5
52 2753 - 3
53 2861 - 1
54 2969 - 1
55 3079 - 1
56 3191 - 1
57 3307 + 1
58 3413 - 9
59 3539 - 1
60 3659 - 1
61 3779 - 3
62 3907 + 1
63 4027 - 5
64 4159 - 1
65 4289 - 1
66 4421 - 1
67 4561 + 5
68 4691 - 1
69 4831 + 1
70 4969 - 1
71 5113 + 1
72 5261 + 5
73 5399 - 3
74 5557 + 7
75 5701 + 1
76 5851 - 1
77 6007 + 1
78 6163 + 1
79 6317 - 3
80 6481 + 1
81 6637 - 5
82 6803 - 3
83 6971 - 1
84 7129 - 11
85 7309 - 1
86 7481 - 1
87 7649 - 7
88 7829 - 3
89 8009 - 1
90 8191 + 1
91 8369 - 3
92 8563 + 7
93 8741 - 1
94 8929 - 1
95 9127 + 7
96 9311 - 1
97 9511 + 5
98 9697 - 5
99 9901 + 1
100 10099 - 1
101 10301 - 1
102 10501 - 5
103 10711 - 1
104 10909 - 11
105 11131 + 1
106 11351 + 9
107 11551 - 5
108 11777 + 5
109 11987 - 3
110 12211 + 1
111 12433 + 1
112 12653 - 3
113 12889 + 7
114 13109 - 1
115 13339 - 1
116 13567 - 5
117 13807 + 1
118 14033 - 9
119 14281 + 1
120 14519 - 1
121 14759 - 3
122 15013 + 7
123 15259 + 7
124 15497 - 3
125 15749 - 1
126 16001 - 1
127 16253 - 3
128 16519 + 7
129 16763 - 7
130 17029 - 1
131 17291 - 1
132 17551 - 5
133 17827 + 5
134 18089 - 1
135 18353 - 7
136 18637 + 5
137 18911 + 5
138 19181 - 1
139 19457 - 3
140 19739 - 1
141 20021 - 1
142 20297 - 9
143 20593 + 1
144 20879 - 1
145 21169 - 1
146 21467 + 5
147 21757 + 1
148 22051 - 1
149 22349 - 1
150 22651 + 1

p = n^2 + (n +/- x) seems to be asymptotically varying with x, which
belongs to a set of odd integers.

Suresh

--- In primenumbers@yahoogroups.com, Décio Luiz Gazzoni Filho
<decio@d...> wrote:
> On Sunday 10 April 2005 23:13, you wrote:
> > I have found this:
> >
> > if n = {1,2,3..., infinite},
> >
> > n^2 + (n -/+ x) is prime where,
> >
> > x = {1,2,4,6,8,10...}
>
> Really? If you remove 1 from your set x, can you provide me with
any examples
> of primes of this form?
>
> *No* bonus points if you can prove why you'll always be
unsuccesful, because
> the proof is so very trivial.
>
> Décio
>
>
> [Non-text portions of this message have been removed]
Your message has been successfully submitted and would be delivered to recipients shortly.