Loading ...
Sorry, an error occurred while loading the content.

25587top100 primes are all mega

Expand Messages
  • paulunderwooduk
    Jul 24, 2014
    • 0 Attachment

      For the record:


      -----  -------------------------------- ------ ---- ---- --------------
       rank  description                      digits who  year comment
      -----  -------------------------------- ------ ---- ---- --------------
          1  2^57885161-1                    17425170 G13  2013 Mersenne 48??
          2  2^43112609-1                    12978189 G10  2008 Mersenne 47??
          3  2^42643801-1                    12837064 G12  2009 Mersenne 46??
          4  2^37156667-1                    11185272 G11  2008 Mersenne 45?
          5  2^32582657-1                    9808358 G9   2006 Mersenne 44?
          6  2^30402457-1                    9152052 G9   2005 Mersenne 43?
          7  2^25964951-1                    7816230 G8   2005 Mersenne 42
          8  2^24036583-1                    7235733 G7   2004 Mersenne 41
          9  2^20996011-1                    6320430 G6   2003 Mersenne 40
         10  2^13466917-1                    4053946 G5   2001 Mersenne 39
         11  19249*2^13018586+1              3918990 SB10 2007 
         12  3*2^10829346+1                  3259959 L3770 2014 
                Divides GF(10829343,3), GF(10829345,5)
         13  475856^524288+1                 2976633 L3230 2012 Generalized Fermat
         14  356926^524288+1                 2911151 L3209 2012 Generalized Fermat
         15  341112^524288+1                 2900832 L3184 2012 Generalized Fermat
         16  27653*2^9167433+1               2759677 SB8  2005 
         17  90527*2^9162167+1               2758093 L1460 2010 
         18  75898^524288+1                  2558647 p334 2011 Generalized Fermat
         19  28433*2^7830457+1               2357207 SB7  2004 
         20  3*2^7033641+1                   2117338 L2233 2011 
                Divides GF(7033639,3)
         21  33661*2^7031232+1               2116617 SB11 2007 
         22  2^6972593-1                     2098960 G4   1999 Mersenne 38
         23  40597*2^6808509-1               2049571 L3749 2013 
         24  6679881*2^6679881+1             2010852 L917 2009 Cullen
         25  304207*2^6643565-1              1999918 L3547 2013 
         26  398023*2^6418059-1              1932034 L3659 2013 
         27  1582137*2^6328550+1             1905090 L801 2009 Cullen
         28  3*2^6090515-1                   1833429 L1353 2010 
         29  7*2^5775996+1                   1738749 L3325 2012 
         30  9*2^5642513+1                   1698567 L3432 2013 
         31  252191*2^5497878-1              1655032 L3183 2012 
         32  258317*2^5450519+1              1640776 g414 2008 
         33  773620^262144+1                 1543643 L3118 2012 Generalized Fermat
         34  3*2^5082306+1                   1529928 L780 2009 
                Divides GF(5082303,3), GF(5082305,5)
         35  676754^262144+1                 1528413 L2975 2012 Generalized Fermat
         36  5359*2^5054502+1                1521561 SB6  2003 
         37a 13*2^4998362+1                  1504659 L3917 2014 
         38  525094^262144+1                 1499526 p338 2012 Generalized Fermat
         39  265711*2^4858008+1              1462412 g414 2008 
         40  1271*2^4850526-1                1460157 L1828 2012 
         41  361658^262144+1                 1457075 p332 2011 Generalized Fermat
         42d 2^4792057-2^2396029+1           1442553 L3839 2014 
                Gaussian Mersenne norm 39??
         43b 653*10^1435026-1                1435029 p355 2014 
         44  9*2^4683555-1                   1409892 L1828 2012 
         45e 11*2^4643238-1                  1397755 L2484 2014 
         46  121*2^4553899-1                 1370863 L3023 2012 
         47a 27*2^4542344-1                  1367384 L1204 2014 
         48  145310^262144+1                 1353265 p314 2011 Generalized Fermat
         49  353159*2^4331116-1              1303802 L2408 2011 
         50  141941*2^4299438-1              1294265 L689 2011 
         51  15*2^4246384+1                  1278291 L3432 2013 
                Divides GF(4246381,6)
         52  3*2^4235414-1                   1274988 L606 2008 
         53  191*2^4203426-1                 1265360 L2484 2012 
         54a 24032*5^1768249+1               1235958 L3925 2014 
         55  40734^262144+1                  1208473 p309 2011 Generalized Fermat
         56  9*2^4005979-1                   1205921 L1828 2012 
         57b 138172*5^1714207-1              1198185 L3904 2014 
         58b 22478*5^1675150-1               1170884 L3903 2014 
         59  27*2^3855094-1                  1160501 L3033 2012 
         60  24518^262144+1                  1150678 g413 2008 Generalized Fermat
         61  123547*2^3804809-1              1145367 L2371 2011 
         62d 326834*5^1634978-1              1142807 L3523 2014 
         63  415267*2^3771929-1              1135470 L2373 2011 
         64  11*2^3771821+1                  1135433 p286 2013 
         65  938237*2^3752950-1              1129757 L521 2007 Woodall
         66d 207394*5^1612573-1              1127146 L3869 2014 
         67d 104944*5^1610735-1              1125861 L3849 2014 
         68e 330286*5^1584399-1              1107453 L3523 2014 
         69  15*2^3668194-1                  1104238 L3665 2013 
         70  65531*2^3629342-1               1092546 L2269 2011 
         71a 113*2^3628034-1                 1092150 L2484 2014 
         72  485767*2^3609357-1              1086531 L622 2008 
         73a 35*2^3587843+1                  1080050 L1979 2014 
                Divides GF(3587841,5)
         74b 35*2^3570777+1                  1074913 L2891 2014 
         75b 33*2^3570132+1                  1074719 L2552 2014 
         76  5*2^3569154-1                   1074424 L503 2009 
         77f 22934*5^1536762-1               1074155 L3789 2014 
         78e Phi(3,3^1118781+1)/3            1067588 L3839 2014 Generalized Unique
         79c 93*2^3544744+1                  1067077 L1728 2014 
         80f 178658*5^1525224-1              1066092 L3789 2014 
         81  1019*2^3536312-1                1064539 L1828 2012 
         82  2*10^1059002-1                  1059003 L3432 2013 Near-repdigit
         83  7*2^3511774+1                   1057151 p236 2008 
                Divides GF(3511773,6)
         84  428639*2^3506452-1              1055553 L2046 2011 
         85  9*2^3497442+1                   1052836 L1780 2012 
                Generalized Fermat, divides GF(3497441,10)
         86e 87*2^3496188+1                  1052460 L1576 2014 
         87e 51*2^3490971+1                  1050889 L1823 2014 
         88  59912*5^1500861+1               1049062 L3772 2014 
         89  37292*5^1487989+1               1040065 L3553 2013 
         90  1273*2^3448551-1                1038121 L1828 2012 
         91  191249*2^3417696-1              1028835 L1949 2010 
         92b 113*2^3409934-1                 1026495 L2484 2014 
         93  59*2^3408416-1                  1026038 L426 2010 
         94f 67*2^3391385-1                  1020911 L1959 2014 
         95  173198*5^1457792-1              1018959 L3720 2013 
         96  81*2^3352924+1                  1009333 L1728 2012 Generalized Fermat
         97  1087*2^3336385-1                1004355 L1828 2012 
         98a 129*2^3328805+1                 1002073 L3859 2014 
         99  464253*2^3321908-1              1000000 L466 2013 
        100  191273*2^3321908-1              1000000 L466 2013 
      

      Paul