Loading ...
Sorry, an error occurred while loading the content.

25224Re: Fermat+Euler+Frobenius

Expand Messages
  • paulunderwooduk
    Jul 18, 2013
    • 0 Attachment
      --- In primenumbers@yahoogroups.com, "djbroadhurst" <d.broadhurst@...> wrote:
      >
      >
      >
      > --- In primenumbers@yahoogroups.com,
      > "paulunderwooduk" <paulunderwood@> wrote:
      >
      > > > David, sorry for the noise. Here is what I have in mind:
      > > Oh dear, I meant ...
      > > Paul -- suffering from error-after-posting syndrome
      >
      > After tidying up your request, the Gremlims happily obliged:
      >
      > {wriggle(a,n)=local(v=[a,3*a^2+1,5*a^2-1,13*a^2-1,3*a^2-7]);
      > sum(k=1,#v,gcd(v[k],n)>1)==0;}
      >
      > {tst(n,a)=local(Q=3*a^2+1);kronecker(a^2-1,n)==-1&&wriggle(a,n)&&
      > Mod(a,n)^((n-1)/2)==kronecker(a,n)&&
      > Mod(a-1,n)^((n-1)/2)==kronecker(a-1,n)&&
      > Mod(a+1,n)^((n-1)/2)==kronecker(a+1,n)&&
      > Mod(Q,n)^((n-1)/2)==kronecker(Q,n)&&
      > Mod(Mod(1,n)*L,L^2-lift(Mod((10*a^2-2)/Q,n))*L+1)^((n+1)/2)==kronecker(Q,n);}
      >
      > {if(tst(9526822969*133375521553,244578343630781166947),
      > print(" Gremlins rule OK"));}
      >
      > Gremlins rule OK
      >

      They do indeed rule. I now present a puzzle: make all the tests "strong" i.e. check roots of 1 where possible. Of course, if n==3 (mod 4) a strong Lucas test will be enough,

      With thanks,

      Paul
    • Show all 24 messages in this topic