Loading ...
Sorry, an error occurred while loading the content.

24748Re: Forward: Mihailescu's CIDE

Expand Messages
  • paulunderwooduk
    Dec 11, 2012
      --- In primenumbers@yahoogroups.com, Chris Caldwell <caldwell@...> wrote:
      >
      > From: Jens Franke (Tuesday, December 11, 2012 4:58 AM)
      >
      > We have confirmed the primality of the Leyland numbers 3110^63+63^3110
      > (5596 digits) and 8656^2929+2929^8656 (30008 digits) by an implementation of a version of Mihailescu's CIDE. The certificates may be found at
      >
      > http://www.math.uni-bonn.de:people/franke/ptest/x3110y63.cert.tar.bz2
      >
      > and
      >
      > http://www.math.uni-bonn.de:people/franke/ptest/x8656y2929.cert.tar.bz2 ,
      >
      > a description of their format together with proofs of the underlying mathematical statements is at
      >
      > http://www.math.uni-bonn.de:people/franke/ptest/fmt-0.1.pdf .
      >
      > Tables of powers of Gauss sums used by the certificates are at
      >
      > http://www.math.uni-bonn.de:people/franke/Gspk.tar.bz2 .
      >
      > Calculations were carried out using resources at the Hausdorff Center for Mathematics (http://www.hausdorff-center.uni-bonn.de), the Institute for Numerical Simulation (http://www.ins.uni-bonn.de/institut/), and LACAL (http://lacal.epfl.ch )
      >
      > J. Franke, T. Kleinjung, A. Decker, J. Ecknig, A. GroƟwendt
      >

      I have emailed Henri Lifchitz about Anatoly F. Selevich's ex-PRP:
      http://www.primenumbers.net/prptop/searchform.php?form=8656^2929%2B2929^8656&action=Search

      Paul
    • Show all 6 messages in this topic