Loading ...
Sorry, an error occurred while loading the content.

24740Re: single frobenius and double fermat

Expand Messages
  • djbroadhurst
    Dec 10, 2012
    • 0 Attachment
      --- In primenumbers@yahoogroups.com,
      "paulunderwooduk" <paulunderwood@...> wrote:

      > gcd(x^3-x,n)==1
      > kronecker(x^2-4,n)==-1
      > (x-2)^((n-1)/2)==kronecker(x-2,n) (mod n)
      > (x+2)^((n-1)/2)==kronecker(x+2,n) (mod n)
      > (x^3-x)*(L^2-4)^(n+1)==(x^3-x)^2*(25-4*x^2) (mod n, L^2-x*L+1)

      {tst(n,x)=kronecker(x^2-4,n)==-1&&gcd(x^3-x,n)==1&&
      Mod(x-2,n)^((n-1)/2)==kronecker(x-2,n)&&
      Mod(x+2,n)^((n-1)/2)==kronecker(x+2,n)&&
      Mod(Mod(1,n)*(x^3-x)*(L^2-4),L^2-x*L+1)^(n+1)==
      (x^3-x)^2*(25-4*x^2);}

      {if(tst(115886944289,3692152318),print("fooled"));}

      fooled

      David
    • Show all 24 messages in this topic