Loading ...
Sorry, an error occurred while loading the content.

20824RE: [PrimeNumbers] Some Benchmark Primality Test

Expand Messages
  • cino hilliard
    Sep 1, 2009
    • 0 Attachment
      Try
      (00:25:59) gp > ispseudoprime(31838235*2^29717+1)
      %129 = 1
      (00:33:39) gp > ##
      *** last result computed in 6mn, 29,015 ms.





      (17:33:32) gp > isprime(31838235*2^29717+1)
      %74 = 1
      (18:35:16) gp > ##
      *** last result computed in 51mn, 53,938 ms.



      c:\pfgw>pfgw -tc -q31838235*2^^29717+1
      PFGW Version 20090725.Win_Dev (Beta 'caveat utilitor') [GWNUM 25.12]

      Primality testing 31838235*2^29717+1 [N-1/N+1, Brillhart-Lehmer-Selfridge]
      Running N-1 test using base 17
      Running N-1 test using base 23
      Running N+1 test using discriminant 31, base 10+sqrt(31)
      Calling N-1 BLS with factored part 100.00% and helper 0.07% (300.08% proof)
      31838235*2^29717+1 is prime! (15.3991s+0.0311s)



      This 8954 digit number will be the top primo candidate if you have the time

      So before you do primo, do pfgw -tc



      pfgw ROCKS!



      Cino







      To: primenumbers@yahoogroups.com
      From: calimero22@...
      Date: Mon, 31 Aug 2009 20:05:01 +0000
      Subject: [PrimeNumbers] Some Benchmark Primality Test






      I post some time test for a primality or pseudoprimality check.

      Tests on AMD Sempron 3000+ (1800 Mhz) WIndows XP
      n=31838235*2^29717+1 digits: 8954
      Tests run by GIOVANNI DI MARIA - email: calimero22@...
      Tests give at least a Pseudoprimality PRP.

      ===================================================================
      GMP Library
      mpz_probab_prime_p(n,r) r=1 = 72 secs.
      mpz_probab_prime_p(n,r) r=0 = 34 secs.
      fermat (mpz_powm(2,n,n) = 2^n MOD n = 34 secs.
      My implementation Fermat algorytm = 33 secs.
      ===================================================================
      PFGW
      pfgw 3.2.2 (On AMD 1800 Mhz) = 3.1 secs.
      pfgw 3.2.2 (On INTEL P4 1800 Mhz) = 1.7 secs. <-----
      ===================================================================
      MATHEMATICA
      Mathematica PowerMod[2,n,n] (Fermat) = 38 secs.
      PrimeQ[n] = 157 secs.
      ===================================================================
      PARI/GP
      ispseudoprime(n) BPSW test = 130 secs.
      ispseudoprime(n,1) strong Rabin-Miller test for 1 base = 43 secs.
      powermod(x,k,m)=lift(Mod(x,m)^k) --> powermod(2,n,n) = 42 secs.
      isprime(n) = too long
      ===================================================================
      PROTH.EXE
      Normal Test = 5 secs.
      ===================================================================
      LLR.EXE
      Normal Test = 7 secs.
      ===================================================================
      PRP.EXE
      Normal Test = 7 secs.
      ===================================================================
      PrimeForm.EXE
      Normal Test = 24 secs.
      ===================================================================










      [Non-text portions of this message have been removed]
    • Show all 5 messages in this topic