Loading ...
Sorry, an error occurred while loading the content.

17868Re: [PrimeNumbers] Re: Cubic x^3 + x^2 + x + t prime generators

Expand Messages
  • Phil Carmody
    Mar 28, 2006
      --- Mark Underwood <mark.underwood@...> wrote:
      > And to top it all off:
      > x^8 - x^4 + 1 has no prime factors below 73 (!)

      Now do you see why PIES has such the incredible density of primes that it has?
      The above is just Phi(24). PIES is looking at Phi(49152) and Phi(98304). The
      super-fruit subprojects can have even higher densities.

      One puzzle I set the PIES guys was the following:
      Mathematicians are invited to calculate the relative density of primes
      of the form Phi(24576,715*b^2) compared to arbitrary numbers of the
      same size.
      Just finding out what its smallest possible factor is should be an eye-opener.


      () ASCII ribbon campaign () Hopeless ribbon campaign
      /\ against HTML mail /\ against gratuitous bloodshed

      [stolen with permission from Daniel B. Cristofani]

      Do You Yahoo!?
      Tired of spam? Yahoo! Mail has the best spam protection around
    • Show all 8 messages in this topic