Loading ...
Sorry, an error occurred while loading the content.

[ai-geostats] Optimal neighborhood definition

Expand Messages
  • ABREU Carlos Eduardo
    Bonjour We are using seismic data volumes, with regularly spaced samples (both in time and space), aiming at decomposing these variables into orthogonal
    Message 1 of 2 , Nov 17, 2005
    • 0 Attachment
      Bonjour
       
       
      We are using seismic data volumes, with regularly spaced samples (both in time and space), aiming at decomposing these variables into orthogonal factors by using a factorial cokriging methodology. A very important step in this estimation approach is the neighborhood definition.
       
      We would appreciate if someone could provide us with papers/suggestions on practical hints on this topic, as the kriging estimator is quite sensitive to number of samples/number of sectors/type of neighborhood/etc.
       
      Which parameters should we take into account to define the "optimal neighborhood"?
       
       
       
      Carlos Eduardo Abreu
       
      ____________________________________________
       
      Institut Français du Pétrole
      1&4, Avenue de Bois-Préau
      92.852 Rueil-Malmaison Cedex - France
      tel: +33 147525654
      fax: +33 147527098
      ____________________________________________
       


      Ce message (et toutes ses pièces jointes éventuelles) est confidentiel et établi à l'intention exclusive de ses destinataires. Toute utilisation de ce message non conforme à sa destination, toute diffusion ou toute publication, totale ou partielle, est interdite, sauf autorisation expresse. L'IFP décline toute responsabilité au titre de ce message.

      This message and any attachments (the message) are confidential and intended solely for the addressees. Any unauthorised use or dissemination is prohibited. IFP should not be liable for this message.

       Visitez notre site Web / Visit our web site : www.ifp.fr


       

       

    • Federico Pardo
      Carlos (or any person who might want to help): Interesting topic. Please let me know any actual reference for general factorial cokriging methodology and
      Message 2 of 2 , Nov 17, 2005
      • 0 Attachment
        Carlos (or any person who might want to help):
         
        Interesting topic.
        Please let me know any actual reference for general factorial cokriging methodology and orthogonal factors.
        If you can send it electronically I will appreciate it.
        I would like to update my understanding of this topic.
         
        Regards,
         
        Federico Pardo


        From: ABREU Carlos Eduardo [mailto:C-Eduardo.ABREU@...]
        Sent: Thursday, November 17, 2005 2:29 PM
        To: 'ai-geostats@...'
        Cc: NIVLET Philippe
        Subject: [ai-geostats] Optimal neighborhood definition

        Bonjour
         
         
        We are using seismic data volumes, with regularly spaced samples (both in time and space), aiming at decomposing these variables into orthogonal factors by using a factorial cokriging methodology. A very important step in this estimation approach is the neighborhood definition.
         
        We would appreciate if someone could provide us with papers/suggestions on practical hints on this topic, as the kriging estimator is quite sensitive to number of samples/number of sectors/type of neighborhood/etc.
         
        Which parameters should we take into account to define the "optimal neighborhood"?
         
         
         
        Carlos Eduardo Abreu
         
        ____________________________________________
         
        Institut Français du Pétrole
        1&4, Avenue de Bois-Préau
        92.852 Rueil-Malmaison Cedex - France
        tel: +33 147525654
        fax: +33 147527098
        ____________________________________________
         


        Ce message (et toutes ses pièces jointes éventuelles) est confidentiel et établi à l'intention exclusive de ses destinataires. Toute utilisation de ce message non conforme à sa destination, toute diffusion ou toute publication, totale ou partielle, est interdite, sauf autorisation expresse. L'IFP décline toute responsabilité au titre de ce message.

        This message and any attachments (the message) are confidential and intended solely for the addressees. Any unauthorised use or dissemination is prohibited. IFP should not be liable for this message.

         Visitez notre site Web / Visit our web site : www.ifp.fr


         

      Your message has been successfully submitted and would be delivered to recipients shortly.