## staircase like effect in a chaotic sequence

Expand Messages
• I captured the step like entropy into an integer sequence with this one. %I A167383 %S A167383
Message 1 of 1 , Nov 2, 2009
• 0 Attachment
I captured the step like entropy into
an integer sequence with this one.

%I A167383
%S A167383 0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,5,
%T A167383 5,5,6,6,6,6,6,6,6,6,6,6,7,7,7,8,9,9,9,10,10,11,11,11,11,11,11,12,13,13,
%U A167383 14,15,15,15,16,16,16,17,17,18,18,19,19,19,19,20,20,20,21,21,21,21,22
%N A167383 Entropy like stair step sequence based on A008185: a(n)=a(n-1)+Ceiling[-(A008185[n + 2]/A008185[n + 1])*Log[(A008185[n + 2]/A008185[n + 1])]/Log[2]]
%C A167383 By using the ratio:
%C A167383 A008185[n + 2]/A008185[n + 1]
%C A167383 the sequence gets a probability effect that gives
%C A167383 a devil's staircase like result.
%F A167383 a(n)=a(n-1)+Ceiling[-(A008185[n + 2]/A008185[n + 1])*Log[(A008185[n + 2]/A008185[n + 1])]/Log[2]]
%t A167383 Clear[f, g, n]; f[0] = 1; f[1] = 1; f[2] = 1;
%t A167383 f[n_] := f[n] = f[n - f[n - 1]] + f[n - f[n - 2]];
%t A167383 g[0] = 0; g[1] = 1;
%t A167383 g[n_] := g[n] = g[n - 1] + Ceiling[-(f[n + 2]/f[n + 1])*Log[(f[n + 2]/f[n + 1])]/Log[2]]
%t A167383 a = Table[g[n], {n, 0, 200}]
%Y A167383 A008185,A136640
%K A167383 nonn
%O A167383 0,15
%A A167383 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 02 2009

--
Respectfully, Roger L. Bagula
11759 Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :