members.

Thanks and welcome to everyone: Bruce Tedesco, Frederic Dupont, J.Melone,

John Starrett, Junling Ma, Kurma, Sebastiano Manzan, Luciano Zazzetti and

Jesus

Crespo. Thanks Jesus for your presentation.

I think during this month and the next one to leave time to all people

interested in

this project to join our list, therefore it could be useful to spend this

time presenting

ourselves obviously refer to the subject of this ML (education, why the

passion for chaos,

chaos field of application, personal and general chaos studies and

research in each field of application,

expectations and suggestments for this ML organization, and so on).

I present myself so you can know who is this misterious man who invited you

to join this list. :)

My name is Simone Caramel, born and living actually in Treviso (30km from

Venice, Italy)

december 18th, 1970.

I was graduated in economics by the University of Venice presenting a

thesis titled:

'Consistency of Expectations in Economic Models with Complex Behavious'

with the supervision

of my chairman prof. PH.D. Alfredo Medio.

So I knew chaos theory when I started to attend Medio's teaching, seen that

he's is specialized in

chaos, and expecially in chaotic dynamics and its applications to

economics.

There are several models used in economic research which are good for a

dynamical approach:

for instance models of overlapping generation (e.g. Benhabib and Day,

1982; Grandmont, 1985),

macroeconomic models (e.g. Stutzer, 1980; Day, 1982), model of rational

consumption (e.g. Benhabib and Day, 1981), models of optimal growth (e.g.

Deneckere and Pelikan, 1986), models derived from economic problems using

one-hump functions (e.g. Baumal and Benhabib, 1988; Lorenz, 1989; Boldrin

and

Woodford, 1990 and Scheinkman, 1990), Cobweb models (e.g. Day and Hanson,

1991), Hick's nonlinear

trade cycle model (e.g. Hommes, 1995), Sunspots (e.g. Woodford, 1990),

Keynesian macroeconomic models (e.g. B�hm, Lohmann and Lorenz, 1994),

Models of complexity in finance (e.g. Brock and Hommes, 1996), Application

to financial markets (e.g. Hsieh, 1991).

Particularly in my thesis I pay attention to the similitudes, using linear

tests (or in terms of linear statistics), between stochastic processes

dynamics and a closed class of deterministic processes generating chaotic

dynamics.

In a feedback expectations system, I show how it is possible to distinguish

between linear (stochastic) expectations and non linear (deterministic)

actual law of motion using some non linear tests: for instance, the

expectational errors are not IID using the BDS test.

I introduce some non linear beliefs, in a tipical model with chaotic

dynamics, to verify its consistency, and after that, I compare this results

with the outcome of an alternative use of simple linear expectations: I

show how, in a consistent expectations equilibria, it could be produced

selffulfilling mistakes, and no more selffulfilling expectations (as in the

CEE by Hommes and Sorger).

A final research was oriented to study the complex dynamics in an OLG model

without production introducing omogeneous or heterogeneous beliefs. I show

that, in case of heterogeneous beliefs, using 2 alternative predictors

chosen considering some performance past measure, if the agents take the

predictors fifty fifty

(or, at the same time, there is a equal distribution of the beliefs between

2 alternative

predictors) then this is a welcome situation to semplify the dynamics of

all the system.

Key words of my thesis are: expectation's formation, agents belief,

learning dynamics, consistency of expectations, neural network, nets of

network, case-based decision theory, sensory order,

nearest neighbour, bounded rationality, piecewise linear predictor, tent

map, BDS test, selfulfilling mistakes,

Markov chain, homogeneous and heterogeneous beliefs in a OLG model.

Waiting for you now, I thank you again, and have a nice holiday if you are

going to spend it in august.

Cordially yours,

Simone Caramel

I leave here the bibliography of my thesis for who can be interested:

References

[1] ABARBANEL H. D. I. � BROWN R. � KADTKE J. B. � Prediction in chaotic

nonlinear system: methods for time series with broadband Fourier spectra,

1990, Physical Review A, 41, pag. 1742 e ss.;

[2] ABARBANEL H. D. I. � BROWN R. � SIDOROWICH J. J. � TSIMIRING LEV SH. �

The analysis of observed chaotic data in physical systems, 1993, Review of

Modern Physics, 65, pag. 1331 e ss.;

[3] AZARIADIS C. � GUESNIERE R. � Sunspots and cycles, 1986. Review of

Economic Studies, 53, pag. 725 � 737;

[4] BALASKO Y. � ROYER D. - Stability of Competitive Equilibrium with

respect to recursive and learning processes, 1996, in Journal of Economic

Theory, n. 68, pag. 319 � 348;

[5] BALASKO Y. � SHELL K. - The Overlapping Generations Model, I & II,

1980 � 1981, in Journal of Economic Theory, n. 23, pag. 281 � 306, n. 24,

pag. 112 � 142;

[6] BARNETT W. A. � GALLANT A. R. � HINICH M. J. � JENSEN M. J. �

Robustness of nonlinearity and chaos tests to measurement error, inference

method and sample size, 1992, working paper sumitted to workshop on

nonlinear dynamics in economics in Florence;

[7] BARNETT W. A. � GALLANT A. R. � HINICH M. J. � JUNGEILGES J. A. �

KAPLAN D. T. � JEMSEN M. J. � A single controlled competition among tests

for nonlinearity and chaos, 1996, Journal of Econometrics, forthcoming;

[8] BENHABIB J. � DAY R. H. � A characterisation of erratic dynamics in

the olg � model, 1982, in Journal of Economic Dynamics and Control, n. 4,

pag. 37 � 55;

[9] BOEHM V. � Wie complex ist die Konjunktur? Chaosforschung und

konjunkturtheorie, 1995, working paper, Universitaet of Bielefeld;

[10] BOEHM V. � LOHMANN M. � LORENZ H. W. � Dynamic complexity in a

keynesian macroeconomic model, 1994, discussion paper n. 288, University of

Bielefeld, Department of Economics;

[11] BOEHM V. � WENZELBURGER J. � Expectations, forecasting and perfect

foresight: a dynamical systems approach, 1997, working paper, University of

Bielefeld;

[12] BOX G. E. P. � JENKINS G. M. � REINSEL G. C. � Time series

analysis. Forecasting and control, 1994, Third edition, Prentice Hall,

Englewood Cliffs;

[13] BRAY M. M. � Learning, estimations, and the stability of rational

expectations, 1982, in Journal of Economic Theory, n. 26, pag. 318 � 339;

[14] BRAY M. M. � SAVIN N. E. � Rational expectations equilibria,

learning and model specification, 1986, in Econometrica, n. 54, pag. 1129 �

1160;

[15] BROCK W. A. � DECHERT W. D. � SCHEINKMAN J. A. � A test for

indipendence based on the correlation dimension, 1987, Technical Report

8702, Social system Research Institute, University of Wisconsin, Madison;

[16] BROCK W. A. � HSIEH D. A. � LE BARON B. � Nonlinear dynamics, chaos

and instability: statistical theory and economic evidence, 1991, MIT Press,

Cambridge, MA;

[17] BROCK W. A. � HOMMES C. H. � Rational routes to randomness, 1995,

working paper, University of Wisconsin, Madison WI 53706, USA;

[18] BROCK W. A. � HOMMES C. H. � Models of complexity in economics and

finance, 1996, working paper, University of Amsterdam, Department of

Economics, Tinbergen Institute;

[19] BROCK W. A. � SAYERS C. � Is the businnes cycle characterized by

deterministic chaos?, 1988, Journal of Monetary Economics, 21, pag. 71 e

ss.;

[20] BLUME L. E. � EASLEY D. - Learning to be rational, 1982, in

Journal of Economic Theory, n. 26, pag. 340 � 351;

[21] BULLARD J. � Learning equilibria, 1994, Journal of Economic Theory,

n. 64, pag. 468 � 485;

[22] BULLARD J. � DUFFY J. � On learning and the stability of cycles,

1995, working paper, Federal Reserve Bank of St. Louis;

[23] CASDAGLI M. � Nonlinear predictions of chaotic time series, 1989,

Physica D, 35, pag. 335 e ss.;

[24] CASDAGLI M. � Nonlinear forecasting, chaos and statistics,

1991, working paper, SFI;

[25] CASDAGLI M. � Chaos and deterministic versus stochastic

non-linear modelling, 1992, J. R. Stat. Soc. B, 54(2), pag. 427 e ss.;

[26] CHATTERJI S. - Temporary equilibrium dynamics with bayesian

learning, 1995, in Journal of Economic Theory, n.67, pag. 590 � 598;

[27] CHATTERJI S. � CHATTOPADHYAY S. � Global stability in spite

of local instability with learning in general equilibrium models, 1996,

Working paper, Universidad de Alicante;

[28] CHIARELLA C. - The cobweb model. Its instability and the oneset of

chaos, 1988, Economic Modelling, 5, pag. 377 - 384;

[29] CLEVELAND W. S. � Research in statistical graphics, 1987, Journal

of the American Statistical Association, 82, pag. 419 e ss.;

[30] CLEVELAND W. S. � Robust locally weighted regression and

smoothing scatterplots, 1979, Journal of the American Statistical

Association, 74, pag. 829 e ss.;

[31] CLEVELAND W. S. � DEVLIN S. J. � Locally weighted regression: an

approach to regression analysis by local fitting, 1988, , Journal of the

American Statistical Association, 83, pag. 596 e ss.;

[32] CRAMER F. - Caos e ordine: la complessa struttura del vivente, 1994,

casa editrice Bollati Boringhieri;

[33] CREANE A.� Jamming a rival's learning, 1995, in Journal of

Economic Theory, n. 65, pag. 585 � 599;

[34] CREMERS J. � HUBLER A. � Costruction of differential equations from

experimental data, 1987, Z. Naturforsch, 42a, pag. 797 e ss.;

[35] CRUTCHFIELD J.P. � MC NAMARA B. S. � Equations of motion from a data

series, 1987, Complex Systems, 1, pag. 417 e ss.;

[36] DAY R. H. - HANSON K. A. - Cobweb chaos, 1991, In: T. K. KAUL - J. K.

SENGUPTA (eds.) Economic models, estimation and socioeconomic systems.

Essay in honor of Karl A. Fox, North Holland, Amsterdam;

[37] DUFOUR A. � Time series analysis development: new contributions from

chaos theory, 1994, gruppo di ricerca prof. Medio, Dipartimento di Scienze

Economiche, Universit� di Venezia;

[38] DIEBOLD F. X. � NASON J. A. � Nonparametric exchange rate

prediction?, 1990, Journal of International Economics, 28, pag. 315 e ss.;

[39] EIGEN M. - SCHUSTER P. - L'iperciclo. Un principio di

auto-organizzazione naturale, trad. it. Pegaso, Rovigo s. a.;

[40] EVANS G. W. � HONKAPOHJA S. � On the local stability of sunspot

equilibria under adaptive learning rules, 1994, Journal of Economic Theory,

n. 64, pag. 142 � 161;

[41] EVANS G. W. � HONKAPOHJA S. � Local convergence of recursive

learning to steady states and cycles in stochastic nonlinear models, 1995,

Econometrica, vol. n. 63, pag. 195 � 206;

[42] EZEKIEL M. � The cobweb theorem, 1938, Quarterly Journal of

Economics, 52, pag. 255 � 280;

[43] FARMER J. D. � SIDOROWICH J. J. � Predicting chaos time series,

1987, Phys. Rev. Lett., 59, pag. 845 e ss.;

[44] FARMER J. D. � SIDOROWICH J. J. � Exploiting chaos to predict the

future and reduce noise, 1988, in Evolution, Learning and Cognition, ed.

Lee Y. C., World Scientific;

[45] FRASER A. M. � SWINNEY H. L. - Indipendent coordinates for strange

attractors from mutual information, 1986, Phys. Rew. A, 33, pag. 1134 e

ss.;

[46] FUCHS G. � Asymptotic stability of stationary temporary equilibria

and changer in expectations, 1976, in Journal of Economic Theory, n.13,

pag. 201 � 216;

[47] FUCHS G. � Formation of expectations. A model in temporary general

equilibrium theory, 1977, in Journal of Mathematical Economics, n.4, pag.

167 � 187;

[48] FUCHS G. - Dynamics of expectations in temporary general equilibrium

theory, 1979, in Journal of Mathematical Economics, n.6, pag. 229 � 251;

[49] FUCHS G. � Is error learning behaviour stabilizing?, 1979, in

Journal of Economic Theory, n. 20, pag. 300 � 317;

[50] FUCHS G. � LAROQUE G. � Dynamics of temporary equilibria and

expectations, 1976, in Econometrica, n. 44, pag. 1157 � 1178;

[51] GALE D. - Pure Exchange Equilibrium of Dynamic Economic Models,

1973, Journal of Economic Theory, n. 6, pag. 12 - 36;

[52] GRANDMONT J. M. � On endogenous competitive businnes cycles, 1985,

in Econometrica, n. 53, pag. 995 � 1045;

[53] GRANDMONT J. M. � Expectations formation and stability in large

socioeconomic systems, 1994, CEPREMAP working paper n. 9424;

[54] GRANDMONT J. M. � HILDEBRAND W. � Stochastic processes of temporary

equilibria, 1974, in Journal of Mathematical Economics, n. 1, pag. 247 �

277;

[55] GRANDMONT J. M. � LAROQUE G. � Money in the pure consumption loan

model, 1973, in Journal of Economic Theory, n. 6, pag. 382 � 395;

[56] GRANDMONT J. M. � LAROQUE G. - Stability of cycles and expectations,

1986, in Journal of Economic Theory, n. 40, pag. 138 � 151;

[57] GRANDMONT J. M. � LAROQUE G. � Economic dynamics with learning: some

instability examples, 1991, in: Barnett et. al. (eds.) Equilibrium theory

and applications, Proceedings of the sixth International Symposium in

Economic Theory and Econometrics, Cambridge University Press, Cambridge;

[58] GRASSBERGER P. � SCHREIBER T. � SCHAFFRATH C. � Nonlinear time

sequence analysis, 1991, Int. J. Of Bifurcation and Chaos, 1(3), pag. 521 e

ss.;

[59] GRASSBERGER P. � SCHREIBER T. � SCHAFFRATH C. � HEGGER R. � KANTZ H. �

On noise reduction methods for chaotic data, 1993, Chaos, 3(2), pag. 127 e

ss.;

[60] HARRINGTON J. E. - Experimentation and learning in a differentiated

products duopoly, 1995, Journal of Economic Theory, n. 66, pag. 275-288;

[61] HOLMES J. M.- MANNING R. � Memory and market stability. The case of

cobweb, 1988, Economic Letters, pag. 1-7;

[62] HOMMES C. H. � Adaptive learning and road to chaos. The case of

cobweb, 1991, Economic Letters, n. 36, pag.127-132;

[63] HOMMES C. H. � A riconsideration of Hick's non-linear trade cycle

model � Structural Change and Economic Dynamics, 1995, n.6, pag. 435-459;

[64] HOMMES C. H. � Dynamics of the cobweb model with adaptive expectations

and non-linear supply and demand, 1994, Journal of Economic Behavior and

Organisation, n. 24, pag. 315-335;

[65] HOMMES C. H. � On the consistency of backward looking expectations:

the case of cobweb, 1995, Working paper 5� Viennese workshop on advances in

nonlinear economic dynamics, 24-26 maggio 1995;

[66] HOMMES C. H. � SORGER G. � Consistent expectations equilibria, 1997,

Working paper, Conference Expectations, Forecasting and Learning, May

29-30, 1997, University of Bielefeld;

[67] HOMMES C. H. � VAN EEKELEN A. � Partial equilibrium analysis in a

noisy chaotic market, 1996, Economic Letters, n.53, pag. 275-282;

[68] HSIEH D. A. � Testing for nonlinear dependence in daily foreign

exchange rates, 1989, Journal of Businnes, 62, pag. 339 e ss.;

[69] HSIEH D. A. � Chaos and nonlinear dynamics: Application to financial

markets, 1991, Journal of Finance, XLVI, pag. 1839 e ss.;

[70] KENNEL M. B. � ISABELLE S. � A method to distinguish possible chaos

from colored noise and determine embedding parameters, 1992, Phys. Rew. A,

46(6), pag. 3111 e ss.;

[71] KURZ M. - On Rational Belief Equilibria, 1994, Economic Theory 4, pag.

859 - 876;

[72] LAPEDES A. � FARBER R. � Nonlinear signal processing using neural

networks: prediction and system modelling, 1987, Los Alamos technical

report LA-UR 2662;

[73] LE BARON B. - Empirical evidence for nonlinearities and chaos in

economic time series: a summary of recent results, 1991, SSRI 9117,

University of Wisconsin, Madison;

[74] LE BARON B. � Forecast improvements using a volatility index, 1992,

Journal of Applied Econometrics, 7, pag. 137 e ss.;

[75] LINSAY P. S. - An efficient method of forecasting chaotic time

series using linear interpolation, 1991, Physical Letters A, 153, pag. 353

e ss.;

[76] LORENZ H. W. - On the role of expectations in a dynamic Keynesian

macroeconomic model, 1995, paper presented at the 5th Viennese Workshop on

Advances in Nonlinear Economic Dynamics, May 24 - 26, 1995;

[77] LIU T. � GRANGER C. W. J. � HELLER W. P. � Using the correlation

exponent to decide wheter an economic series is chaotic, 1992, Journal of

Applied Econometrics, 7, pag. 25 e ss.;

[78] LUNGHINI G. � RAMPA G. � Conoscenza, equilibrio ed incertezza

endogena, 1995, working paper, Universit� di Genova ed Universit� di Pavia;

[79] LUNGHINI G. � RAMPA G. � Il falso problema dei microfondamenti, 1996,

working paper, Istituto di scienze economiche e finanziarie, Universit� di

Genova;

[80] MARCENT A. � SARGENT T. J. � The fate of Systems with 'Adaptive'

Expectations, 1988, American economic review � Papers and Proceedings, 78,

pag. 168 � 172;

[81] MARCENT A. � SARGENT T. J. � Convergence of least squares learning

in mechanisms in self referential linear stochastic models, 1989, Journal

of Economic Theory, 48, pag. 337 � 368;

[82] MARCET A. - NICOLINI J. P. - Recurrent hyperinflations and learning,

1995, Working Paper, Universidad Pompeu Fabra;

[83] MARIMON R. � Learning from learning in economics, 1996, European

University Institute, Working paper ECO n. 96/12;

[84] MAY R. M. � Simple mathematical models with very compicated

dynamics, 1976, Nature, 261, pag. 459 e ss.;

[85] MEDIO A. � Chaotic dynamics � Theory and applications to economics,

1992, Cambridge University Press;

[86] MEDIO A. � Ergodicity, predictability and chaos, working paper, April

1995, Department of Economics, University of Venice;

[87] MEDIO A. - LINES M. - DUFOUR A. - Chaotic theory and prediction

with applications to economics, 1993, paper submitted to the Wageningen

conference on 'Predictability and nonlinear modelling in natural Sciences

and Economics';

[88] MEDIO A. � NEGRONI G. � Chaotic dynamics in OLG models with

productions, 1993, �nota di lavoro� n. 93.08, Universit� degli studi di

Venezia;

[89] MIZRACH B. � Multivariate nearest-neighbour forecasts of EMS

exchange rates, 1992, Journal of Applied Econometrics, 7, pag. 151 e ss.;

[90] MURRAY D. B. � Forecasting a chaotic time series using an improved

metric for embedding space, 1993, Physica D, 68, pag. 318 e ss.;

[91] MUTH J. F. � Rational expectations and the theory of price

movement, 1961, Econometrica, vol. n. 29, pag. 315 � 335;

[92] NERLOVE M. � Adaptive expectations and cobweb phenomena, 1958,

Quarterly Journal of Economics, 72, pag. 227 � 240;

[93] NERLOVE M. - GRETHER D. M. - CARVALHO J. L. - Analysis of economic

time series. A systhesis, 1979, Academic Press, New York;

[94] NYARKO Y. � Learning in mis-specified models and the possibility of

cycles, 1991, Journal of economic theory, 55, pag. 416 � 427;

[95] PRIESTLEY M. B. � Nonlinear and non stationary time series

analysis, 1988, Academic Press;

[96] RAMPA G. � Informazione, ordine individuale, ordine sociale, 1996,

working paper preparato per il volume �Decisioni, informazioni,

aspettative: nuovi orientamenti dell'analisi economica� a cura di A.

Vercelli, Il Mulino;

[97] RAMPA G. � Modelli individuali ed esiti complessivi: premesse ad uno

studio delle fluttuazioni economiche, 1988, casa editrice CLUEB, Bologna;

[98] RAMPA G. � Social system as net of networks and the problem of

information transmission, 1996, working paper, Universit� di Genova;

[99] RAMPA G. � Trovare in ordine, mettere in ordine: il difficile

rapporto tra Hayek e gli economisti, 1995, working paper, Universit� di

Genova;

[100] SAKAI H. � TOKUMARU H. � Autocorrelations of certain chaos, 1980,

IEEE Transactions on acoustic, speech and signal processing, Vol. ASSP-28,

pag. 588 � 590;

[101] SARGENT T. J. � Bounded rationality in macroeconomics, 1993,

Clarendon Press, Oxford;

[102] SCHOENHOFER M. � Chaotic learning equilibria, 1996, discussion

paper n. 317, Department of Economics, University of Bielefeld;

[103] SCHULTZ C. � The impossibility of involuntary unemployment in OLG

model with rational expectations, 1992, Journal of economic theory, 58,

pag. 61 � 76;

[104] SILVERMAN B. W. � Densities estimation for statistics and data

analysis, 1986, Chapman & Hall, Londra;

[105] SORGER G. � Imperfect foresight and chaos: an example of a

self-fulfilling mistake, 1994, Journal of economic Behavior & Organisation,

forthcoming;

[106] SUGIHARA G. � MAY R. M. � Nonlinear forecasting as a way of

distinguishing chaos from measurement errors in time series, 1990, Nature,

pag. 734 e ss.;

[107] TAKENS F. - Detecting strange attractors in turbulence, 1981, In

Rand, D. A. and Young, L. S. (eds.), Dynamical Systems and Turbulence, pag.

366 - 381, New York: Springer Verlag;

[108] TAYLOR T. J. - On stochastic and chaotic motion, 1992, Working

paper, Workshop on Nonlinear dynamics in economics, Firenze;

[109] TILLMAN G. � Stability in a simple pure consumption loan model,

1983, Journal of economic theory, 30, pag. 315 � 329;

[110] TONG H. � Nonlinear time series. A dynamical system approach, 1990,

Oxford Science Pubblications;

[111] TONG H. - Some comments on a bridge between nonlinear dynamicists

and statisticians, 1992, Physica D, 58, pag. 299 � 303;

[112] TONG H. � Threshold models in nonlinear time series analysis, 1983,

Spinger-Verlag, New York;

[113] TONG H. � LIM K. � Threshold autoregression, limit cycles and

cyclical data, 1980, J. R. Stat. Soc. B, 42, pag. 245 e ss.;

[114] TONG H. - SMITH R. L. - Royal Statistical Society on Chaos, 1992, J.

R. Stat. Soc. B, 54(2), pag. 301 e ss.;

[115] WOODFORD M. - Imperfect financial intermediation and complex

dynamics, 1993, Nonlinear dynamics in economic theory, a cura di M.

Jarsulic, casa editrice Elgar;

[116] WOODFORD M. - Learning to believe in sunspots, 1990, Econometrica,

n. 58, vol. 2, pag. 277 - 306;

[117] HAYEK VON F. - Individualism of Economic Order, 1945, Chicago, The

University of Chicago press;

[118] HAYEK VON F. - The sensory order. An Inquiry into the Foundation of

Theoretical Psychology, 1952, Chicago, The University of Chicago press;

[119] HAHN F.H. - On the notion of equilibrium in economics. An inaugural

lecture, 1973, Cambridge, CUP.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Caramel Simone

via Doberd� 3

31020 - Fontane di Villorba

Treviso - Italy

tel. +39 0422 420564 home

+39 0338 8129030 mobile

+39 0422 300792 work

http://users.iol.it/canziani.ado

e-mail:

adothepoet@...

~~~~~~~~~~~~~~~~~~~~~~~~~~~~