I have read your email carefully, and then read the AIMA book again. My idea is as follows:

1. A* will find the optimal (best) solution. It is correct.

2. Your idea has one implicit assumption, which is not same as the book. That's you assume that "GOAL-TEST(NODE)" check will be run immediate after the "EXPAND" function. The correct one (AIMA books "GENERAL-SEARCH" pceudo-code) is "EXPAND", then "QUEUE-FN", then "GOAL-TEST".

2.1 Your above implicit assumption means that you doesn't give the more chance to "A*" for finding more optimal solution.

2.2 Explain by your example. After "Node B f(B)=120" is expanded, in the A* queue, 2 nodes exists. One is "Node D f(D)=180", the other is "Node C f(C)=140". Then (Please look at "GENERAL-SEARCH" pseudo-code) function "QUEUING-FN" will work. It will produce list which "Node B f(B)=120" is a header. In the next loop, "Node B" will be expanded. It means that although the goal of "Node D" has been founded, the A* will continue to run until it finds a optimal solution.

3. I just think in the actual programming, your implicit assumption will be used. It means comparing between found pure optimal (A*) solution, the quick and efficient algorithm is more important.

Kind regards/chenyu

-----Original Message-----

From: Imanpreet Singh Arora [mailto:imanpreet_arora@...]

Sent: 2003年12月19日 3:54

To: aima-talk@yahoogroups.com

Subject: [aima-talk] Re: A* algorithm

--- In aima-talk@yahoogroups.com, E etech058 <etech058@o...> wrote:

> Hi,

> I have used AIMA version 1, do you use version 1 or not?

> I haven't found the inequality of "c(n,a,n') <= h(n) + h(n')" in

page 99.

> In addition, the scenario is not easy to understand, could you

represent it more clearly.

>

>

> Kind regards/chenyu

>

Thanks, I am using version 2.0. Moreover on page 99 you won't find the

given inequality but the following

h(n) <= c(n, a, n') + h(n');

and it was written that it is a triangular inequality, I am wondering

if the triangular inequality is applicable as whole for all the sides

like is it applicable for the inequality

c(n, a, n') <= h(n) + h(n');

I would try to clarify the scenario, though since I know that the

original indentation that I provided in the message seems to have been

lost.

We have a root node A, and the h(A) is 100.

It has two childern B and C.

g(B) =70 and g(C) = 60

h(B) = 50 and h(C) = 80

so

f(B) = 120

f(C) = 140

Meaning that it would be f(B) that would be expanded, B has a Child

named D and this child is common for the nodes B and C.

Now when B would be expanded the child D would have it's parent set to B.

The cost of getting to D from B and C is respectively 40 and 20 so the

total

g( D through B) is 110

g ( D through C) is 80

Now at this juncture C would be expanded and though D is the child of

C, D's parent would be still set to B because according to section 3.5

the new path would always be rejected.

According to the claims of the authors if h(n) is consitent and

admissible we would certainly find an optimal solution I am not sure

we are able to in this very case.

I belive that if we use the f cost in order to determine the parent of

a node we would certainly find the optimal soution, because for D

f( D through B ) is 190

f ( D through C) is 160

Would the authors and peers be kind to elucidate? I seem to be unable

to relate the equations and principles to a possible graph space that

can clarify me.

--

Imanpreet Singh Arora

To unsubscribe from this group, send an email to:

aima-talk-unsubscribe@yahoogroups.com

Yahoo! Groups Links

To visit your group on the web, go to:

http://groups.yahoo.com/group/aima-talk/

To unsubscribe from this group, send an email to:

aima-talk-unsubscribe@yahoogroups.com

Your use of Yahoo! Groups is subject to:

http://docs.yahoo.com/info/terms/