- Topics
*Topics* - TrendingSkip to main content
*Trending*

# Topics List

### Re: Orthocenter lies on Euler line

(4)

[Tran Quang Hung]: Let ABC be a triangle with circumcenter O. Ka,Kb,Kc are circumcenters of triangles OBC,OCA,OAB. Ka*,Kb*,Kc* are isogonal conjugate of
Antreas Hatzipolakis

Mar 24

### Concurrent Euler lines locus

(5)

Variation: Let ABC be a triangle and P a point. Denote: A'B'C' = the cevian triangle of P A"B"C" = the circumcevian triangle of P. Ab, Ac = the orthogonal
Antreas Hatzipolakis

Mar 22

### NPC Coaxial, Loci

(3)

Let ABC be a triangle and P a point. Denote: A', B', C' = the reflections of P in BC, CA, AB, resp. O', H' = the circumcenter, orthocenter of A'B'C', resp. 1.
Antreas Hatzipolakis

Mar 18

Fetching Sponsored Content...

### Circumcenters on the Euler line

(7)

Let ABC be a triangle and A'B'C' the pedal triangle of N. Denote: Ab, Ac = the orthogonal projections of A' on NB', NC', resp. A* = NA' intersection AbAc.
Antreas Hatzipolakis

Mar 18

### Circumcenter, Locus

(3)

Let ABC be a triangle and P a point. Denote: A', B', C' = the reflections of P in BC, CA, AB, resp. Which is the locus of P such that the circumcenter O' of
Antreas Hatzipolakis

Mar 17

### Euler lines, Locus

(6)

[APH]: Let ABC be a triangle and P a point. Denote: A', B', C' = the reflections of P in BC, CA, AB, resp. Ab, Ac = intersections of BC and A'B', A'C', resp.
Antreas Hatzipolakis

Mar 16

### H, O, NPC, Collinear, Envelope

(4)

[Antreas Hatzipolakis]: Let ABC be a triangle, A'B'C' the cevian triangle of H and L a line. Denote: A* = L Intersection AA' B* = L Intersection BB' C* = L
Antreas Hatzipolakis

Mar 14

### H, Coaxial NPCs

(3)

[APH]: I do not remember if I have posted it before...... Let ABC be a triangle and P a point. Denote: A', B', C' = the reflections of P in BC, CA, AB, resp.
Antreas Hatzipolakis

Mar 13

### O, Concurrent NPCs

(4)

[APH]: Let ABC be a triangle. Denote; A', B', C' = the reflections of O in BC, CA, AB, resp. [A', B', C' are the reflections of A,B,C in N, resp.] Ab, Ac = the
Antreas Hatzipolakis

Mar 11

Antreas Hatzipolakis

Mar 10

### H, O, Coaxial

(5)

[APH]: Let ABC be a triangle and H1B1C1 the pedal triangle of H. Denote; A', B', C' = the reflections of O in BC, CA, AB, resp. Ab, Ac = the orthogonal
Antreas Hatzipolakis

Mar 10

### Points on the Incircle

(8)

[Peter Moses]: Hi Antreas, An intouch version. A’B’C’ = intouch triangle. (Ja) = incircle of AB’C’ circle tangent externally to (Ja) (Jb) & (Jc),
Antreas Hatzipolakis

Mar 9

### Perspective, locus

(3)

[APH]: Let ABC be a triangle, P a point and A'B'C' the cevian triangle of P. Denote: A* = (Parallel from B' to CC') intersection (Parallel from C' to BB')
Antreas Hatzipolakis

Mar 8

### Pedal, NPC, radical axes, parallelogic, locus

(5)

[Antreas Hatzipolakis]: Let ABC be a triangle, P, Q two isogonal conjugate points and A'B'C' the pedal triangle of Q. Denote: P, Pa, Pb, Pc = same points of
Antreas Hatzipolakis

Mar 3

### A conic

(5)

[APH]: Let ABC be a triangle. Denote: La = the perpendicular to AI at I. The perpendicular to AB at B intersects La at A2 The perpendicular to AC at C
Antreas Hatzipolakis

Feb 28

Fetching Sponsored Content...

## Trending Topics

See All- Re: Orthocenter lies on Euler line 4 Posts
- Concurrent Euler lines locus 5 Posts
- NPC Coaxial, Loci 3 Posts
- Circumcenters on the Euler line 7 Posts
- Circumcenter, Locus 3 Posts

View First Topic
Go to
View Last Topic