- Topics
*Topics* - TrendingSkip to main content
*Trending*

# Topics List

### Re: [EMHL] LOCUS

(29)

[APH]: Let ABC be a triangle and P a point. Denote: Pa, Pb, Pc = the reflections of P in of BC, CA, AB, resp. Oa, Ob, Oc = the circumcenters of APbPc, BPcPa,
Antreas Hatzipolakis

11:07 AM

### Concurrent Circumcircles at a point on the NPC

(3)

[APH]: Let ABC be a triangle, P a point and MaMbMc, PaPbPc the pedal triangles of O,P, resp. Denote: Bc = MaMb /\ PaPc Cb = MaMc /\ PaPb Ca = MbMc /\ PbPa Ac
Antreas Hatzipolakis

Jan 17

### Concurrent NPCs

(18)

[APH]: Let ABC be a triangle and A'B'C' the pedal triangle of I. Denote: A" = AH /\ B'C' B" = BH /\ C'A' C" = CH /\ A'B' The NPCs of A"HI, B"HI, C"HI are
Antreas Hatzipolakis

Jan 16

Fetching Sponsored Content...

### A Line

(3)

[APH]: Let ABC be a triangle, P a point and MaMbMc, PaPbPc the pedal triangles of O, P, resp. Deonte: M1, M2, M3 = the midpoints of AP, BP, CP, resp. The
Antreas Hatzipolakis

Jan 15

### Symmetric points on the sides of triangle

(6)

NOTE: I change the notation of Antreas H. and Kadir Altintas Let ABC be a triangle. 0. GENERAL CASE The circle B(ra) of center B and radius ra, cut BC into
Antreas Hatzipolakis

Jan 14

### Locus problem

(15)

Let ABC be a triangle, P a point and A'B'C' the cevian triangle of P. Denote: A" = the other than P intersection of the circles (B', B'P) and (C', C'P) B" =
Antreas Hatzipolakis

Jan 13

### H, perspective

(14)

[APH]: Let ABC be a triangle and A'B'C' the cevian triangle of Η. Denote: Ab, Ac = the orthogonal projections of A' on BB', CC', resp. A2, A3 = the orthogonal
Antreas Hatzipolakis

Jan 13

### H, NPC, Parallelogic

(3)

Let ABC be a triangle and A'B'C' the cevian triangle of H. Denote: MaMbMc = the midheight triangle. (ie Ma, Mb, Mc = the midpoints of AA', BB', CC', resp.) Ab,
Antreas Hatzipolakis

Jan 10

### N, H, O , NPC, Euler lines.

(3)

[APH]: Let ABC be a triangle. Denote: Nah, Nao = the orthogonal projections of N on AH, AO, resp. La = the Euler line of ANahNao. Similarly Lb, Lc. N1 = the
Antreas Hatzipolakis

Jan 9

### Circumcevian, Concurrent Euler lines

(7)

Thanks, Peter, for your reply !! (Hyacinthos 27017 ) The general problem is: Let
Antreas Hatzipolakis

Jan 5

### O, Euler lines, parallelogic

(4)

[APH]: Let ABC be a triangle. Denote: Oa, Ob, Oc = the reflections of O in BC, CA, AB, resp. Oab, Oac = the reflections of Oa in AB, AC, resp. Obc, Oba = the
Antreas Hatzipolakis

Jan 3

### H, Orthologic

(17)

[APH]: Let ABC be a triangle and A'B'C' the cevian triangle of H. Denote: A"B"C" = the midheight triangle (ie A", B", C" = the midpoints of AA', BB', CC',
Antreas Hatzipolakis

Dec 30, 2017

### A circumcenter on the Euler line

(22)

GENERALIZATION Let ABC be a triangle and Ra, Rb, Rc three lines perpendicular to BC, CA, AB, resp. Let A*B*C* be the triangle bounded by Ra, Rb, Rc The Euler
Antreas Hatzipolakis

Dec 28, 2017

### Pedal, Euler lines

(4)

[APH]: Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P. Denote: La, Lb, Lc = the Euler lines of AB'C', BC'A', CA'B', resp. Oa, Ob, Oc = the
Antreas Hatzipolakis

Dec 26, 2017

### Re: I, cyclologic

(10)

[APH]: Let ABC be a triangle and A'B'C' the pedal triangle of I. Denote: A", B", C" = the antipodes of A', B', C' in the incircle, resp. A* = AA" /\ BC B* =
Antreas Hatzipolakis

Dec 18, 2017

Fetching Sponsored Content...

## Trending Topics

See All- Re: [EMHL] LOCUS 29 Posts
- Concurrent Circumcircles at a... 3 Posts
- Concurrent NPCs 18 Posts
- A Line 3 Posts
- Symmetric points on the sides... 6 Posts

View First Topic
Go to
View Last Topic