Loading ...
Sorry, an error occurred while loading the content.
 

cubics (was: McCay & McKay)

Expand Messages
  • xpolakis@otenet.gr
    ... Dear Bernard, A. Monjallon solved a problem (consisting of 8 questions) on the Triangle - Antitangential Triangle (this triangle in my language is
    Message 1 of 1 , May 20, 2000
      [Bernard Gibert]:

      >>Jean-Pierre and myself have come across McCay & McKay in our studies on
      >>cubics.

      [APH]:

      >BTW, recently I read something in French on some triangle cubics (as loci) but
      >haven't understand the notation of the points. I'll write a note about.

      Dear Bernard,

      A. Monjallon solved a problem (consisting of 8 questions) on the Triangle -
      Antitangential Triangle (this triangle in my "language" is Clark's
      Intouch Triangle) in which some interesting results appear.
      An example, but in my wording:
      The Focus of the Kiepert Parabola of the Antitangential Triangle is the
      Feuerbach Point of the Reference Triangle
      (==> The Feuerbach Point of the Tangential Triangle is the Focus of the
      Kiepert Parabola of the Reference Triangle).
      In a NOTE DE LA REDACTION we read:
      "Au 8o, on ne demande pas les lieux des points upper-case-greek-omega,
      upper-case-greek-gamma, lower-case-greek-eta, ce qui exigerait une
      reciproque conduisant a un <i>probleme du troisieme degre</i>; trop de
      correspondants ont agi legerement en utilisant le mot lieu pour les
      courbes sur lesquelles ces points varient."

      But I can't locate these greek-named points in the text/figures.

      Here is the full reference in the case you (or someone else) might want to
      look at:
      Concours general des lycees et colleges. Annee 1948. Classe mathematique.
      Journal de mathematiques elementaires 73(1948-1949) 65 - 67, #14069

      Greetings from Athens

      Antreas
    Your message has been successfully submitted and would be delivered to recipients shortly.