Dear Hyacinthos:

In "II Olimpiada matematica de centroamerica y del Caribe"

San Salvador 10 julio 2000, the problem 5 is:

Let ABC a triangle with acutes angles.

C1 and C2 circles with diameters AB and CA.

C2 meet to AB in point F (F other of A).

C1 meet to CA in point E (E other of A).

BE meet to C2 in P.

CF meet to C1 in Q.

Proof with length AP and lengt AQ they are equals.

Reference:

http://www.geocities.com/CollegePark/7174
Friendly

Ricardo

Home Page:

http://www.pdipas.us.es/r/rbarroso
_______________________________________________________________

Yahoo! Messenger

Nueva versión: Webcam, voz, y mucho más ¡Gratis!

Descárgalo ya desde

http://messenger.yahoo.es