your "error" leads to another point on the Lester circle, so no regret !>

that is correct and the corresponding point on the Lester circle is the

> Again I am sorry for another error. The triangles should have been

> T(5,13,14), T(5,17,18), T(6,14,17), and T(6,13,18).

reflection of X6 about the line through the centers of circumcircles of

T(6,14,17), and T(6,13,18).

1st bary :

5*a^14 - 21*a^12*b^2 + 41*a^10*b^4 - 38*a^8*b^6 - 7*a^6*b^8 + 49*a^4*b^10 -

39*a^2*b^12 + 10*b^14 - 21*a^12*c^2 +

44*a^10*b^2*c^2 - 44*a^8*b^4*c^2 + 80*a^6*b^6*c^2 - 146*a^4*b^8*c^2 +

155*a^2*b^10*c^2 - 50*b^12*c^2 + 41*a^10*c^4 -

44*a^8*b^2*c^4 - 53*a^6*b^4*c^4 + 88*a^4*b^6*c^4 - 251*a^2*b^8*c^4 +

90*b^10*c^4 - 38*a^8*c^6 + 80*a^6*b^2*c^6 +

88*a^4*b^4*c^6 + 270*a^2*b^6*c^6 - 50*b^8*c^6 - 7*a^6*c^8 -

146*a^4*b^2*c^8 - 251*a^2*b^4*c^8 - 50*b^6*c^8 +

49*a^4*c^10 + 155*a^2*b^2*c^10 + 90*b^4*c^10 - 39*a^2*c^12 - 50*b^2*c^12 +

10*c^14

index : 3.22223

The other point in message #5626 lies on the circles (6,13,17), (6,14,18)

and (5,6,E221) where E221 is the point on the Euler line such that

OE221=6/5 OG (vectors).

The line through those two points meets the Euler line at X381 = GH

midpoint.

The two points are different from point E380 of message #5622.>

Unfortunately not. I use Cabri for my drawings.

> Are you able to receive GSP files?

Best regards

Bernard