Loading ...
Sorry, an error occurred while loading the content.

Orthologic Triangles - Locus

Expand Messages
  • Antreas
    1. Let ABC be a triangle, A B C the pedal triangle of point P and A ,B ,C the second intersections of the circles (P,PA ), (P,PB ), (P,PC ) with the pedal
    Message 1 of 18 , Mar 15, 2013
    • 0 Attachment
      1. Let ABC be a triangle, A'B'C' the pedal triangle of point P
      and A",B",C" the second intersections of the circles (P,PA'),
      (P,PB'), (P,PC') with the pedal circle of P, resp.

      Which is the locus of P such that the triangles ABC, A"B"C"
      are orthologic?

      O is on the locus.

      2. Let ABC be a triangle, A'B'C' the pedal triangle of point P,
      A*B*C* the circumcevian triangle of P wrt A'B'C' and A",B",C" the
      second intersections of the circles (P,PA*), (P,PB*), (P,PC*) with
      the pedal circle of P, resp.

      Which is the locus of P such that the triangles ABC, A"B"C"
      are orthologic?

      H is on the locus.

      Figures:
      http://anthrakitis.blogspot.gr/2013/03/orthologic-triangles-locus.html

      APH
    • Angel
      ... Dear Antreas The locus of real point P such that the triangles ABC, A B C are orthologic is Q068 (a circular equilateral quintic) in Higher Degree Related
      Message 2 of 18 , Mar 15, 2013
      • 0 Attachment
        --- In Hyacinthos@yahoogroups.com, "Antreas" <anopolis72@...> wrote:
        >
        > 1. Let ABC be a triangle, A'B'C' the pedal triangle of point P
        > and A",B",C" the second intersections of the circles (P,PA'),
        > (P,PB'), (P,PC') with the pedal circle of P, resp.
        >
        > Which is the locus of P such that the triangles ABC, A"B"C"
        > are orthologic?
        >
        > O is on the locus.

        Dear Antreas

        The locus of real point P such that the triangles ABC, A"B"C" are orthologic is Q068 (a circular equilateral quintic) in Higher Degree Related Curves.
        http://bernard.gibert.pagesperso-orange.fr/relatedcurves.html


        It is a result does not appear between the propiedades of Q068 in http://bernard.gibert.pagesperso-orange.fr/curves/q068.html


        We can express as:

        Let ABC be a triangle, A'B'C' the pedal triangle of point P and O' the circumcenter of A'B'C'. Let A", B", C" be the symmetrical points of A, B, C w/r to the line PO'. The triangles ABC, A"B"C" are orthologic if and only if P lies on Q068.


        (http://groups.yahoo.com/group/Hyacinthos/files/Hyacinthos21754A.eps)


        Angel M.
      • Angel
        Writing correct geometric property of the quintic Q068 in the message #21755: Let ABC be a triangle, A B C the pedal triangle of point P and O the
        Message 3 of 18 , Mar 15, 2013
        • 0 Attachment
          Writing correct geometric property of the quintic Q068 in the message #21755:

          Let ABC be a triangle, A'B'C' the pedal triangle of point P and O' the
          circumcenter of A'B'C'. Let A", B", C" be the symmetrical points of A', B', C' w/r to the line PO'. The triangles ABC, A"B"C" are orthologic if and only if P lies on Q068.


          A particular situation:

          If P=X(3) the orthology centers of ABC y A"B"C" (on NPC) are Q=X(113) and R, nine-point-circle-antipode of X(3258).


          R= (2*a^8 - a^4*(b^4-4*b^2*c^2+c^4)- 2*a^6*(b^2+c^2) + (b^2-c^2)^4 )*
          (a^6*(b^2 + c^2) + a^4*(-3*b^4 + 2*b^2*c^2 - 3*c^4)+
          a^2*(3*b^6 - 2*b^4*c^2 - 2*b^2*c^4 + 3*c^6)-
          (b^2 - c^2)^2*(b^4 + 3*b^2*c^2 + c^4)) : .... : ....



          Angel M.

          --- In Hyacinthos@yahoogroups.com, "Angel" <amontes1949@...> wrote:
          >
          >
          >
          > --- In Hyacinthos@yahoogroups.com, "Antreas" <anopolis72@> wrote:
          > >
          > > 1. Let ABC be a triangle, A'B'C' the pedal triangle of point P
          > > and A",B",C" the second intersections of the circles (P,PA'),
          > > (P,PB'), (P,PC') with the pedal circle of P, resp.
          > >
          > > Which is the locus of P such that the triangles ABC, A"B"C"
          > > are orthologic?
          > >
          > > O is on the locus.
          >
          > Dear Antreas
          >
          > The locus of real point P such that the triangles ABC, A"B"C" are orthologic is Q068 (a circular equilateral quintic) in Higher Degree Related Curves.
          > http://bernard.gibert.pagesperso-orange.fr/relatedcurves.html
          >
          >
          > It is a result does not appear between the propiedades of Q068 in http://bernard.gibert.pagesperso-orange.fr/curves/q068.html
          >
          >
          > We can express as:
          >
          > Let ABC be a triangle, A'B'C' the pedal triangle of point P and O' the circumcenter of A'B'C'. Let A", B", C" be the symmetrical points of A, B, C w/r to the line PO'. The triangles ABC, A"B"C" are orthologic if and only if P lies on Q068.
          >
          >
          > (http://groups.yahoo.com/group/Hyacinthos/files/Hyacinthos21754A.eps)
          >
          >
          > Angel M.
          >
        • Nikolaos Dergiades
          Dear Angel, you wrote ... I think you know that more precisely P lies on Linf + Circumcircle + Q068 + sextic Qx = -b^2 c^4 x^4 y^2 - a^2 c^4 x^3 y^3 - b^2 c^4
          Message 4 of 18 , Mar 16, 2013
          • 0 Attachment
            Dear Angel,
            you wrote
            > Let ABC be a triangle, A'B'C' the pedal triangle of point P
            > and O' the
            > circumcenter of A'B'C'. Let A", B", C" be the symmetrical
            > points of A', B', C' w/r to the line PO'. The triangles ABC,
            > A"B"C" are  orthologic if and only if P lies on Q068.

            I think you know that more precisely
            P lies on Linf + Circumcircle + Q068 + sextic
            Qx = -b^2 c^4 x^4 y^2 - a^2 c^4 x^3 y^3 - b^2 c^4 x^3 y^3 + c^6 x^3 y^3 -
            a^2 c^4 x^2 y^4 + a^2 b^2 c^2 x^4 y z - b^4 c^2 x^4 y z -
            b^2 c^4 x^4 y z + a^2 b^2 c^2 x^3 y^2 z - b^4 c^2 x^3 y^2 z +
            b^2 c^4 x^3 y^2 z - a^4 c^2 x^2 y^3 z + a^2 b^2 c^2 x^2 y^3 z +
            a^2 c^4 x^2 y^3 z - a^4 c^2 x y^4 z + a^2 b^2 c^2 x y^4 z -
            a^2 c^4 x y^4 z - b^4 c^2 x^4 z^2 + a^2 b^2 c^2 x^3 y z^2 +
            b^4 c^2 x^3 y z^2 - b^2 c^4 x^3 y z^2 + 6 a^2 b^2 c^2 x^2 y^2 z^2 +
            a^4 c^2 x y^3 z^2 + a^2 b^2 c^2 x y^3 z^2 - a^2 c^4 x y^3 z^2 -
            a^4 c^2 y^4 z^2 - a^2 b^4 x^3 z^3 + b^6 x^3 z^3 - b^4 c^2 x^3 z^3 -
            a^4 b^2 x^2 y z^3 + a^2 b^4 x^2 y z^3 + a^2 b^2 c^2 x^2 y z^3 +
            a^4 b^2 x y^2 z^3 - a^2 b^4 x y^2 z^3 + a^2 b^2 c^2 x y^2 z^3 +
            a^6 y^3 z^3 - a^4 b^2 y^3 z^3 - a^4 c^2 y^3 z^3 - a^2 b^4 x^2 z^4 -
            a^4 b^2 x y z^4 - a^2 b^4 x y z^4 + a^2 b^2 c^2 x y z^4 -
            a^4 b^2 y^2 z^4 = 0

            But if P lies on Circumcircle then the points A', B', C'
            are collinear and
            if P lies on Qx then the points A", B", C" are collinear.

            Best regards
            Nikos Dergiades
          • Antreas Hatzipolakis
            Dear Nikos If P is lying on your Qx, what kind of circle is the pedal circle of P, on which should be lying three collinear points A ,B ,C ? APH On Sat, Mar
            Message 5 of 18 , Mar 16, 2013
            • 0 Attachment
              Dear Nikos

              If P is lying on your Qx, what kind of circle is the pedal circle of
              P, on which
              should be lying three collinear points A",B",C"?

              APH

              On Sat, Mar 16, 2013 at 10:15 AM, Nikolaos Dergiades
              <ndergiades@...> wrote:
              > Dear Angel,
              > you wrote
              >> Let ABC be a triangle, A'B'C' the pedal triangle of point P
              >> and O' the
              >> circumcenter of A'B'C'. Let A", B", C" be the symmetrical
              >> points of A', B', C' w/r to the line PO'. The triangles ABC,
              >> A"B"C" are orthologic if and only if P lies on Q068.
              >
              > I think you know that more precisely
              > P lies on Linf + Circumcircle + Q068 + sextic
              > Qx = -b^2 c^4 x^4 y^2 - a^2 c^4 x^3 y^3 - b^2 c^4 x^3 y^3 + c^6 x^3 y^3 -
              > a^2 c^4 x^2 y^4 + a^2 b^2 c^2 x^4 y z - b^4 c^2 x^4 y z -
              > b^2 c^4 x^4 y z + a^2 b^2 c^2 x^3 y^2 z - b^4 c^2 x^3 y^2 z +
              > b^2 c^4 x^3 y^2 z - a^4 c^2 x^2 y^3 z + a^2 b^2 c^2 x^2 y^3 z +
              > a^2 c^4 x^2 y^3 z - a^4 c^2 x y^4 z + a^2 b^2 c^2 x y^4 z -
              > a^2 c^4 x y^4 z - b^4 c^2 x^4 z^2 + a^2 b^2 c^2 x^3 y z^2 +
              > b^4 c^2 x^3 y z^2 - b^2 c^4 x^3 y z^2 + 6 a^2 b^2 c^2 x^2 y^2 z^2 +
              > a^4 c^2 x y^3 z^2 + a^2 b^2 c^2 x y^3 z^2 - a^2 c^4 x y^3 z^2 -
              > a^4 c^2 y^4 z^2 - a^2 b^4 x^3 z^3 + b^6 x^3 z^3 - b^4 c^2 x^3 z^3 -
              > a^4 b^2 x^2 y z^3 + a^2 b^4 x^2 y z^3 + a^2 b^2 c^2 x^2 y z^3 +
              > a^4 b^2 x y^2 z^3 - a^2 b^4 x y^2 z^3 + a^2 b^2 c^2 x y^2 z^3 +
              > a^6 y^3 z^3 - a^4 b^2 y^3 z^3 - a^4 c^2 y^3 z^3 - a^2 b^4 x^2 z^4 -
              > a^4 b^2 x y z^4 - a^2 b^4 x y z^4 + a^2 b^2 c^2 x y z^4 -
              > a^4 b^2 y^2 z^4 = 0
              >
              > But if P lies on Circumcircle then the points A', B', C'
              > are collinear and
              > if P lies on Qx then the points A", B", C" are collinear.
              >
              > Best regards
              > Nikos Dergiades
            • Nikolaos Dergiades
              Dear Antreas, this Qx comes from the calculations but I said nonsense because I thik it is obvious that this sextic is valid only for P = I. This point I lies
              Message 6 of 18 , Mar 16, 2013
              • 0 Attachment
                Dear Antreas,
                this Qx comes from the calculations
                but I said nonsense because I thik it is
                obvious that this sextic is valid only for
                P = I.
                This point I lies on Q068 but it must be
                excluded because the line PO' is not defined.
                There is only one line passing through I
                such that the reflections A",B",C"
                give a triangle orthologic with ABC.

                Thank you Antreas.
                Regards
                Nikos


                --- Στις Σάβ., 16/03/13, ο/η Antreas Hatzipolakis <anopolis72@...> έγραψε:

                > Από: Antreas Hatzipolakis <anopolis72@...>
                > Θέμα: Re: [EMHL] Re: Orthologic Triangles - Locus
                > Προς: Hyacinthos@yahoogroups.com
                > Ημερομηνία: Σάββατο, 16 Μάρτιος 2013, 10:33
                > Dear Nikos
                >
                > If P is lying on your Qx, what kind of circle is the pedal
                > circle of
                > P,  on which
                > should be lying three collinear points A",B",C"?
                >
                > APH
                >
                > On Sat, Mar 16, 2013 at 10:15 AM, Nikolaos Dergiades
                > <ndergiades@...>
                > wrote:
                > > Dear Angel,
                > > you wrote
                > >> Let ABC be a triangle, A'B'C' the pedal triangle of
                > point P
                > >> and O' the
                > >> circumcenter of A'B'C'. Let A", B", C" be the
                > symmetrical
                > >> points of A', B', C' w/r to the line PO'. The
                > triangles ABC,
                > >> A"B"C" are  orthologic if and only if P lies
                > on Q068.
                > >
                > > I think you know that more precisely
                > > P lies on Linf + Circumcircle + Q068 + sextic
                > > Qx = -b^2 c^4 x^4 y^2 - a^2 c^4 x^3 y^3 - b^2 c^4 x^3
                > y^3 + c^6 x^3 y^3 -
                > >  a^2 c^4 x^2 y^4 + a^2 b^2 c^2 x^4 y z - b^4 c^2
                > x^4 y z -
                > >  b^2 c^4 x^4 y z + a^2 b^2 c^2 x^3 y^2 z - b^4 c^2
                > x^3 y^2 z +
                > >  b^2 c^4 x^3 y^2 z - a^4 c^2 x^2 y^3 z + a^2 b^2
                > c^2 x^2 y^3 z +
                > >  a^2 c^4 x^2 y^3 z - a^4 c^2 x y^4 z + a^2 b^2 c^2
                > x y^4 z -
                > >  a^2 c^4 x y^4 z - b^4 c^2 x^4 z^2 + a^2 b^2 c^2
                > x^3 y z^2 +
                > >  b^4 c^2 x^3 y z^2 - b^2 c^4 x^3 y z^2 + 6 a^2 b^2
                > c^2 x^2 y^2 z^2 +
                > >  a^4 c^2 x y^3 z^2 + a^2 b^2 c^2 x y^3 z^2 - a^2
                > c^4 x y^3 z^2 -
                > >  a^4 c^2 y^4 z^2 - a^2 b^4 x^3 z^3 + b^6 x^3 z^3 -
                > b^4 c^2 x^3 z^3 -
                > >  a^4 b^2 x^2 y z^3 + a^2 b^4 x^2 y z^3 + a^2 b^2
                > c^2 x^2 y z^3 +
                > >  a^4 b^2 x y^2 z^3 - a^2 b^4 x y^2 z^3 + a^2 b^2
                > c^2 x y^2 z^3 +
                > >  a^6 y^3 z^3 - a^4 b^2 y^3 z^3 - a^4 c^2 y^3 z^3 -
                > a^2 b^4 x^2 z^4 -
                > >  a^4 b^2 x y z^4 - a^2 b^4 x y z^4 + a^2 b^2 c^2 x
                > y z^4 -
                > >  a^4 b^2 y^2 z^4 = 0
                > >
                > > But if P lies on Circumcircle then the points A', B',
                > C'
                > > are collinear and
                > > if P lies on Qx then the points A", B", C" are
                > collinear.
                > >
                > > Best regards
                > > Nikos Dergiades
                >
                >
                > ------------------------------------
                >
                > Yahoo! Groups Links
                >
                >
                >     Hyacinthos-fullfeatured@yahoogroups.com
                >
                >
              • Nikolaos Dergiades
                Sorry there are two lines. ND
                Message 7 of 18 , Mar 16, 2013
                • 0 Attachment
                  Sorry there are two lines.

                  ND

                  > Dear Antreas,
                  > this Qx comes from the calculations
                  > but I  said nonsense because I thik it is
                  > obvious that this sextic is valid only for
                  > P = I.
                  > This point I lies on Q068 but it must be
                  > excluded because the line PO' is not defined.
                  > There is only one line passing through I
                  > such that the reflections A",B",C"
                  > give a triangle orthologic with ABC.
                  >
                  > Thank you Antreas.
                  > Regards
                  > Nikos
                  >
                  >
                  > --- Στις Σάβ., 16/03/13, ο/η Antreas Hatzipolakis
                  > <anopolis72@...>
                  > έγραψε:
                  >
                  > > Από: Antreas Hatzipolakis <anopolis72@...>
                  > > Θέμα: Re: [EMHL] Re: Orthologic Triangles - Locus
                  > > Προς: Hyacinthos@yahoogroups.com
                  > > Ημερομηνία: Σάββατο, 16 Μάρτιος
                  > 2013, 10:33
                  > > Dear Nikos
                  > >
                  > > If P is lying on your Qx, what kind of circle is the
                  > pedal
                  > > circle of
                  > > P,  on which
                  > > should be lying three collinear points A",B",C"?
                  > >
                  > > APH
                  > >
                  > > On Sat, Mar 16, 2013 at 10:15 AM, Nikolaos Dergiades
                  > > <ndergiades@...>
                  > > wrote:
                  > > > Dear Angel,
                  > > > you wrote
                  > > >> Let ABC be a triangle, A'B'C' the pedal
                  > triangle of
                  > > point P
                  > > >> and O' the
                  > > >> circumcenter of A'B'C'. Let A", B", C" be the
                  > > symmetrical
                  > > >> points of A', B', C' w/r to the line PO'. The
                  > > triangles ABC,
                  > > >> A"B"C" are  orthologic if and only if P lies
                  > > on Q068.
                  > > >
                  > > > I think you know that more precisely
                  > > > P lies on Linf + Circumcircle + Q068 + sextic
                  > > > Qx = -b^2 c^4 x^4 y^2 - a^2 c^4 x^3 y^3 - b^2 c^4
                  > x^3
                  > > y^3 + c^6 x^3 y^3 -
                  > > >  a^2 c^4 x^2 y^4 + a^2 b^2 c^2 x^4 y z - b^4 c^2
                  > > x^4 y z -
                  > > >  b^2 c^4 x^4 y z + a^2 b^2 c^2 x^3 y^2 z - b^4
                  > c^2
                  > > x^3 y^2 z +
                  > > >  b^2 c^4 x^3 y^2 z - a^4 c^2 x^2 y^3 z + a^2 b^2
                  > > c^2 x^2 y^3 z +
                  > > >  a^2 c^4 x^2 y^3 z - a^4 c^2 x y^4 z + a^2 b^2
                  > c^2
                  > > x y^4 z -
                  > > >  a^2 c^4 x y^4 z - b^4 c^2 x^4 z^2 + a^2 b^2 c^2
                  > > x^3 y z^2 +
                  > > >  b^4 c^2 x^3 y z^2 - b^2 c^4 x^3 y z^2 + 6 a^2
                  > b^2
                  > > c^2 x^2 y^2 z^2 +
                  > > >  a^4 c^2 x y^3 z^2 + a^2 b^2 c^2 x y^3 z^2 - a^2
                  > > c^4 x y^3 z^2 -
                  > > >  a^4 c^2 y^4 z^2 - a^2 b^4 x^3 z^3 + b^6 x^3 z^3
                  > -
                  > > b^4 c^2 x^3 z^3 -
                  > > >  a^4 b^2 x^2 y z^3 + a^2 b^4 x^2 y z^3 + a^2 b^2
                  > > c^2 x^2 y z^3 +
                  > > >  a^4 b^2 x y^2 z^3 - a^2 b^4 x y^2 z^3 + a^2 b^2
                  > > c^2 x y^2 z^3 +
                  > > >  a^6 y^3 z^3 - a^4 b^2 y^3 z^3 - a^4 c^2 y^3 z^3
                  > -
                  > > a^2 b^4 x^2 z^4 -
                  > > >  a^4 b^2 x y z^4 - a^2 b^4 x y z^4 + a^2 b^2 c^2
                  > x
                  > > y z^4 -
                  > > >  a^4 b^2 y^2 z^4 = 0
                  > > >
                  > > > But if P lies on Circumcircle then the points A',
                  > B',
                  > > C'
                  > > > are collinear and
                  > > > if P lies on Qx then the points A", B", C" are
                  > > collinear.
                  > > >
                  > > > Best regards
                  > > > Nikos Dergiades
                  > >
                  > >
                  > > ------------------------------------
                  > >
                  > > Yahoo! Groups Links
                  > >
                  > >
                  > >     Hyacinthos-fullfeatured@yahoogroups.com
                  > >
                  > >
                  >
                  >
                  > ------------------------------------
                  >
                  > Yahoo! Groups Links
                  >
                  >
                  >     Hyacinthos-fullfeatured@yahoogroups.com
                  >
                  >
                • Angel
                  ... Made the correction: Let A , B , C be the symmetrical points of A , B , C instead of: Let A , B , C be the symmetrical points of A, B, C This is the
                  Message 8 of 18 , Mar 16, 2013
                  • 0 Attachment
                    --- In Hyacinthos@yahoogroups.com, "Angel" <amontes1949@...> wrote:
                    >
                    >
                    > Writing correct geometric property of the quintic Q068 in the message #21755:
                    >
                    > Let ABC be a triangle, A'B'C' the pedal triangle of point P and O' the
                    > circumcenter of A'B'C'. Let A", B", C" be the symmetrical points of A', B', C' w/r to the line PO'. The triangles ABC, A"B"C" are orthologic if and only if P lies on Q068.
                    >
                    >
                    > A particular situation:
                    >
                    > If P=X(3) the orthology centers of ABC y A"B"C" (on NPC) are Q=X(113) and R, nine-point-circle-antipode of X(3258).
                    >
                    >
                    > R= (2*a^8 - a^4*(b^4-4*b^2*c^2+c^4)- 2*a^6*(b^2+c^2) + (b^2-c^2)^4 )*
                    > (a^6*(b^2 + c^2) + a^4*(-3*b^4 + 2*b^2*c^2 - 3*c^4)+
                    > a^2*(3*b^6 - 2*b^4*c^2 - 2*b^2*c^4 + 3*c^6)-
                    > (b^2 - c^2)^2*(b^4 + 3*b^2*c^2 + c^4)) : .... : ....
                    >
                    >
                    >
                    > Angel M.
                    >

                    Made the correction:

                    Let A", B", C" be the symmetrical points of A', B', C'

                    instead of:

                    Let A", B", C" be the symmetrical points of A, B, C


                    This is the corrected EPS:

                    http://groups.yahoo.com/group/Hyacinthos/files/Hyacinthos21754Acorrected.eps




                    Angel M.
                  • Angel
                    Dear Antreas 2. Let ABC be a triangle, A B C the pedal triangle of point P, A*B*C* the circumcevian triangle of P wrt A B C and A ,B ,C the second
                    Message 9 of 18 , Mar 16, 2013
                    • 0 Attachment
                      Dear Antreas

                      2. Let ABC be a triangle, A'B'C' the pedal triangle of point P,
                      A*B*C* the circumcevian triangle of P wrt A'B'C' and A",B",C" the
                      second intersections of the circles (P,PA*), (P,PB*), (P,PC*) with
                      the pedal circle of P, resp.

                      The locus of P such that the triangles ABC, A"B"C" are orthologic is the septic Qnnn:

                      -a^2 c^4 x^4 y^3 + b^2 c^4 x^4 y^3 + c^6 x^4 y^3 -
                      a^2 c^4 x^3 y^4 + b^2 c^4 x^3 y^4 - c^6 x^3 y^4 +
                      2 b^2 c^4 x^4 y^2 z - 2 a^2 c^4 x^2 y^4 z -
                      2 b^4 c^2 x^4 y z^2 - 2 b^4 c^2 x^3 y^2 z^2 +
                      2 b^2 c^4 x^3 y^2 z^2 + 2 a^4 c^2 x^2 y^3 z^2 -
                      2 a^2 c^4 x^2 y^3 z^2 + 2 a^4 c^2 x y^4 z^2 +
                      a^2 b^4 x^4 z^3 - b^6 x^4 z^3 - b^4 c^2 x^4 z^3 - 2 a^4 b^2 x^2
                      y^2 z^3 + 2 a^2 b^4 x^2 y^2 z^3 + a^6 y^4 z^3 - a^4 b^2 y^4 z^3 +
                      a^4 c^2 y^4 z^3 + a^2 b^4 x^3 z^4 + b^6 x^3 z^4 -
                      b^4 c^2 x^3 z^4 + 2 a^2 b^4 x^2 y z^4 - 2 a^4 b^2 x y^2 z^4 -
                      a^6 y^3 z^4 - a^4 b^2 y^3 z^4 + a^4 c^2 y^3 z^4=0,

                      (+ line at infinity (A'B'C' undefined triangle) + circumcircle (A', B' and C' points aligned) + a sextic ).

                      Points of the septic Qnnn:

                      A, B, C (triple points)
                      X(1) double , X(4)
                      excenters (which are double)
                      feet of the altitudes.



                      The sextic (without real points ???)is:

                      -b^2 c^4 x^4 y^2 - a^2 c^4 x^3 y^3 - b^2 c^4 x^3 y^3 +
                      c^6 x^3 y^3 - a^2 c^4 x^2 y^4 + a^2 b^2 c^2 x^4 y z -
                      b^4 c^2 x^4 y z - b^2 c^4 x^4 y z + a^2 b^2 c^2 x^3 y^2 z -
                      b^4 c^2 x^3 y^2 z + b^2 c^4 x^3 y^2 z - a^4 c^2 x^2 y^3 z +
                      a^2 b^2 c^2 x^2 y^3 z + a^2 c^4 x^2 y^3 z - a^4 c^2 x y^4 z +
                      a^2 b^2 c^2 x y^4 z - a^2 c^4 x y^4 z - b^4 c^2 x^4 z^2 +
                      a^2 b^2 c^2 x^3 y z^2 + b^4 c^2 x^3 y z^2 - b^2 c^4 x^3 y z^2 +
                      6 a^2 b^2 c^2 x^2 y^2 z^2 + a^4 c^2 x y^3 z^2 +
                      a^2 b^2 c^2 x y^3 z^2 - a^2 c^4 x y^3 z^2 - a^4 c^2 y^4 z^2 -
                      a^2 b^4 x^3 z^3 + b^6 x^3 z^3 - b^4 c^2 x^3 z^3 -
                      a^4 b^2 x^2 y z^3 + a^2 b^4 x^2 y z^3 + a^2 b^2 c^2 x^2 y z^3 +
                      a^4 b^2 x y^2 z^3 - a^2 b^4 x y^2 z^3 + a^2 b^2 c^2 x y^2 z^3 +
                      a^6 y^3 z^3 - a^4 b^2 y^3 z^3 - a^4 c^2 y^3 z^3 - a^2 b^4 x^2 z^4 - a^4 b^2 x y z^4 - a^2 b^4 x y z^4 + a^2 b^2 c^2 x y z^4 -
                      a^4 b^2 y^2 z^4=0.



                      Best regards
                      Angel Montesdeoca





                      --- In Hyacinthos@yahoogroups.com, "Antreas" <anopolis72@...> wrote:
                      >
                      > 1. Let ABC be a triangle, A'B'C' the pedal triangle of point P
                      > and A",B",C" the second intersections of the circles (P,PA'),
                      > (P,PB'), (P,PC') with the pedal circle of P, resp.
                      >
                      > Which is the locus of P such that the triangles ABC, A"B"C"
                      > are orthologic?
                      >
                      > O is on the locus.
                      >
                      > 2. Let ABC be a triangle, A'B'C' the pedal triangle of point P,
                      > A*B*C* the circumcevian triangle of P wrt A'B'C' and A",B",C" the
                      > second intersections of the circles (P,PA*), (P,PB*), (P,PC*) with
                      > the pedal circle of P, resp.
                      >
                      > Which is the locus of P such that the triangles ABC, A"B"C"
                      > are orthologic?
                      >
                      > H is on the locus.
                      >
                      > Figures:
                      > http://anthrakitis.blogspot.gr/2013/03/orthologic-triangles-locus.html
                      >
                      > APH
                      >
                    • Antreas Hatzipolakis
                      Let ABC be a triangle, P a point and A B C the pedal triangle of P. Denote: Bc = the orthogonal projection of B on PC B3 = the reflection of Bc in PB Cb =
                      Message 10 of 18 , Apr 29, 2014
                      • 0 Attachment
                        Let ABC be a triangle, P a point and A'B'C' the pedal triangle of P.

                        Denote:

                        Bc = the orthogonal projection of B' on PC'
                        B3 = the reflection of Bc in PB'

                        Cb = the orthogonal projection of C' on PB'
                        C2 = the reflection of Cb in PC'

                        Similarly C1, A3 and A2, B1

                        Which is the locus of P such that ABC and triangle bounded by
                        (B3C2, C1A3, A2B1) are 1. orthologic 2. parallelogic?

                        For P = H
                        They are orthologic (the orth. center (ABC, (B3C2, C1A3, A2B1)) is (X(74))
                        and parallelogic (the parallelogic center (ABC, (B3C2, C1A3, A2B1)) is X(110)

                        APH
                      • Antreas Hatzipolakis
                        Starting point: Let ABC be a triangle. Denote: La, Lb, Lc = the reflections of the Euler line in BC,CA,AB, resp. Oa, Ob, Oc = the reflections of O in La, Lb,
                        Message 11 of 18 , Nov 4, 2014
                        • 0 Attachment
                          Starting point:

                          Let ABC be a triangle.

                          Denote:

                          La, Lb, Lc = the reflections of the Euler line in BC,CA,AB, resp.

                          Oa, Ob, Oc = the reflections of O in La, Lb, Lc resp.

                          ABC, OaObOc are orthologic.
                          Which is the other than O orthologic center?
                          (ie the orthologic center (OaObOc, ABC))

                          Generalization:

                          Let ABC be a triangle and P a point.

                          Denote:

                          La, Lb, Lc = the reflections of the Euler line in BC,CA,AB, resp.

                          Pa, Pb, Pc = the reflections of P in La, Lb, Lc resp.

                          Which is the locus of P such that ABC, PaPbPc are orthologic ?

                          APH


                        • Antreas Hatzipolakis
                          Let ABC be a triangle and P a point. Denote: A B C = the pedal triangle of P O = the circumcenter of A B C ( = the center of the pedal circle of P) A B C =
                          Message 12 of 18 , Dec 16, 2014
                          • 0 Attachment

                             Let ABC be a triangle and P a point.

                            Denote:

                            A'B'C' = the pedal triangle of P

                            O' = the circumcenter of A'B'C' ( = the center of the pedal circle of P)

                            A"B"C" = the pedal triangle of O'.

                            Which is the locus of P such that A'B'C', A"B"C"
                            are orthologic?

                            On the locus:

                            1. P = H (O' = N)

                            Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C'

                            Orthologic center (A'B'C', A"B"C") = ?

                            2. P = Ο (O' = N)

                            Orthologic center (A"B"C", A'B'C') = the O of A'B'C' =  the NPC center of ABC

                            Orthologic center (A'B'C', A"B"C") = ? on the Euler line of the orthic triangle
                            Which point is this wrt tr. ABC and which wrt orthic tr. of ABC?

                            This is interesting because we can take as reference triangle the orthic
                            tiangle in order to get a point on the Euler line of ABC.

                            That is:

                            Let ABC be a triangle and A'B'C' the antipedal triangle of I.
                            (ABC is the pedal triangle of H of A'B'C'').
                            Now:
                            Let A1B1C1 be the pedal triangle of N of A'B'C' [ = O of ABC]
                            Let A2B2C2 be the pedall triangle of O of A'B'C'

                            A1B1C1, A2B2C2 are orthologic.

                            The orthologic center (A1B1C1, A2B2C2) is N of A'B'C' [= O of ABC]
                            The orthologic center (A2B2C2, A1B1C1) lies on the Euler line
                            of ABC. Point ?

                            APH









                          • Antreas Hatzipolakis
                            ... Circumcircle, infinity, K003 . McCay cubic 1) Orthologic center (A B C , A B C ) = the NPC
                            Message 13 of 18 , Dec 16, 2014
                            • 0 Attachment

                              [Antreas]:

                               Let ABC be a triangle and P a point.

                              Denote:

                              A'B'C' = the pedal triangle of P

                              O' = the circumcenter of A'B'C' ( = the center of the pedal circle of P)

                              A"B"C" = the pedal triangle of O'.

                              Which is the locus of P such that A'B'C', A"B"C"
                              are orthologic?

                              On the locus:

                              1. P = H (O' = N)

                              Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C'

                              Orthologic center (A'B'C', A"B"C") = ?

                              2. P = Ο (O' = N)

                              Orthologic center (A"B"C", A'B'C') = the O of A'B'C' =  the NPC center of ABC

                              Orthologic center (A'B'C', A"B"C") = ? on the Euler line of the orthic triangle
                              Which point is this wrt tr. ABC and which wrt orthic tr. of ABC?

                              This is interesting because we can take as reference triangle the orthic
                              tiangle in order to get a point on the Euler line of ABC.

                              That is:

                              Let ABC be a triangle and A'B'C' the antipedal triangle of I.
                              (ABC is the pedal triangle of H of A'B'C'').
                              Now:
                              Let A1B1C1 be the pedal triangle of N of A'B'C' [ = O of ABC]
                              Let A2B2C2 be the pedall triangle of O of A'B'C'

                              A1B1C1, A2B2C2 are orthologic.

                              The orthologic center (A1B1C1, A2B2C2) is N of A'B'C' [= O of ABC]
                              The orthologic center (A2B2C2, A1B1C1) lies on the Euler line
                              of ABC. Point ?

                              APH


                              [Peter Moses]:

                              >Which is the locus of P such that A'B'C', A"B"C" are orthologic?
                              Circumcircle, infinity, K003. McCay cubic
                               
                              1)
                              Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C' = X(143) of ABC
                              Orthologic center (A'B'C', A"B"C") = on ABCs lines {{4,93},{6,24},{25,195},...} = X(79) of Orthic?
                              2)
                              Orthologic center (A'B'C', A"B"C") = X(1209) of ABC, X(3651) of Orthic. (probably!)
                               
                              Best regards
                              Peter


                            • Antreas Hatzipolakis
                              ... ************************** Thanks, Peter, What a surprise! A new point in such a simple construction !!!! I wouldn t bet a cent for it as a new point :-)
                              Message 14 of 18 , Dec 16, 2014
                              • 0 Attachment



                                [Antreas]:

                                 Let ABC be a triangle and P a point.

                                Denote:

                                A'B'C' = the pedal triangle of P

                                O' = the circumcenter of A'B'C' ( = the center of the pedal circle of P)

                                A"B"C" = the pedal triangle of O'.

                                Which is the locus of P such that A'B'C', A"B"C"
                                are orthologic?

                                On the locus:

                                1. P = H (O' = N)

                                Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C'

                                Orthologic center (A'B'C', A"B"C") = ?

                                2. P = Ο (O' = N)

                                Orthologic center (A"B"C", A'B'C') = the O of A'B'C' =  the NPC center of ABC

                                Orthologic center (A'B'C', A"B"C") = ? on the Euler line of the orthic triangle
                                Which point is this wrt tr. ABC and which wrt orthic tr. of ABC?




                                [Peter Moses]:

                                >Which is the locus of P such that A'B'C', A"B"C" are orthologic?
                                Circumcircle, infinity, K003. McCay cubic
                                 
                                1)
                                Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C' = X(143) of ABC
                                Orthologic center (A'B'C', A"B"C") = on ABCs lines {{4,93},{6,24},{25,195},...} = X(79) of Orthic?
                                2)
                                Orthologic center (A'B'C', A"B"C") = X(1209) of ABC, X(3651) of Orthic. (probably!)
                                 
                                Best regards
                                Peter



                                **************************

                                Thanks, Peter,

                                What a surprise! A new point in such a simple construction !!!!
                                I wouldn't bet a cent for it as a new point :-)

                                Description of the point:

                                Let ABC be a triangle and A'B'C', A"B"C" the pedal triangles of H,N, resp.

                                A'B'C', A"B"C" are orthologic with orthologic center (A'B'C', A"B"C")
                                on {4,93},{6,24},{25,195},.. lines of ABC.

                                If you compute other "things" of the point (coordinates etc) please let me know
                                (to inform Clark)

                                Season's Greetings

                                APH
                              • Antreas Hatzipolakis
                                ... *************************************** Another observation in the same configuration. But let s first rename the pedal triangles. Let ABC be a triangle
                                Message 15 of 18 , Dec 16, 2014
                                • 0 Attachment





                                  [Antreas]:

                                   Let ABC be a triangle and P a point.

                                  Denote:

                                  A'B'C' = the pedal triangle of P

                                  O' = the circumcenter of A'B'C' ( = the center of the pedal circle of P)

                                  A"B"C" = the pedal triangle of O'.

                                  Which is the locus of P such that A'B'C', A"B"C"
                                  are orthologic?

                                  On the locus:

                                  1. P = H (O' = N)

                                  Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C'

                                  Orthologic center (A'B'C', A"B"C") = ?

                                  2. P = Ο (O' = N)

                                  Orthologic center (A"B"C", A'B'C') = the O of A'B'C' =  the NPC center of ABC

                                  Orthologic center (A'B'C', A"B"C") = ? on the Euler line of the orthic triangle
                                  Which point is this wrt tr. ABC and which wrt orthic tr. of ABC?




                                  [Peter Moses]:

                                  >Which is the locus of P such that A'B'C', A"B"C" are orthologic?
                                  Circumcircle, infinity, K003. McCay cubic
                                   
                                  1)
                                  Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C' = X(143) of ABC
                                  Orthologic center (A'B'C', A"B"C") = on ABCs lines {{4,93},{6,24},{25,195},...} = X(79) of Orthic?
                                  2)
                                  Orthologic center (A'B'C', A"B"C") = X(1209) of ABC, X(3651) of Orthic. (probably!)
                                   
                                  Best regards
                                  Peter



                                  ***************************************

                                  Another observation in the same configuration.
                                  But let's first rename the pedal triangles.

                                  Let ABC be a triangle and AhBhCh, AoBoCo, AnBnCn the pedal triangles
                                  of H,O,N resp

                                  The midpoint of the line segment joining the orthologic centers (AhBhCh, AnBnCn) and (AoBoCo, AnBnCn) is the orthocenter of AnBnCn.

                                  Which is this point (the orthocenter of the pedal triangle of N)?

                                  And is it a general property of all (pairs of isogonal conj.) points on the locus (the McCay cubic)?

                                  ie that, that midpoint is the orthocenter of the pedal triangle of the center of the common pedal circle of the isog. conj. points?
                                  (Or at least is it lying on the Euler line of the triangle)?


                                  Hmmm....... neither I understand at first glance what I wrote ("the orthocenter
                                  of the pedal triangle of the center of the common pedal circle of the isog. conj.
                                  points") !  :-). So let me rewrit it

                                  Let ABC be a triangle and P,P* two isogonal conjugate points on the McCay
                                  cubic and let Q be the center of the common pedal circle of P,P* (= midpoint
                                  of PP*)

                                  Denote:
                                  T1, T2, T3 = the pedal triangles of P,  P*, Q, resp.

                                  Let Mp be the midpoint of the line segment joining the orthologcic centers (T1, T3) and (T2, T3).

                                  Is Mp the orthocenter of T3 for all P's (on the cubic)?
                                  Or in general, is it lying on the Euler line of T3 (orthocenter or not) ?

                                  Which is its locus as P moves on the McCay cubic?

                                  APH





                                • Antreas Hatzipolakis
                                  From: Randy Hutson Dear Antreas and Peter, This point appears in César E. Lozada s Perspective-Orthologic-Parallelogic.pdf as the orthologic center of orthic
                                  Message 16 of 18 , Dec 16, 2014
                                  • 0 Attachment

                                    From: Randy Hutson
                                     

                                    Dear Antreas and Peter,

                                    This point appears in César E. Lozada's Perspective-Orthologic-Parallelogic.pdf as the orthologic center of orthic and reflection triangles, also reflection of X(54) in X(973), with trilinears a*((S^2-SA^2)*(SW-R^2)+2*S^2*SA)/SA : : and search value 12.481825032289.

                                    This point is also the orthic isogonal conjugate of X(1594), and X(79) of orthic IF ABC is acute.

                                    Best regards,
                                    Randy



                                  • Antreas Hatzipolakis
                                    Dear Antreas and Peter, This point appears in César E. Lozada s Perspective-Orthologic-Parallelogic.pdf as the orthologic center of orthic and reflection
                                    Message 17 of 18 , Dec 16, 2014
                                    • 0 Attachment

                                       

                                      Dear Antreas and Peter,

                                      This point appears in César E. Lozada's Perspective-Orthologic-Parallelogic.pdf as the orthologic center of orthic and reflection triangles, also reflection of X(54) in X(973), with trilinears a*((S^2-SA^2)*(SW-R^2)+2*S^2*SA)/SA : : and search value 12.481825032289.

                                      This point is also the orthic isogonal conjugate of X(1594), and X(79) of orthic IF ABC is acute.

                                      Best regards,
                                      Randy


                                      ********************

                                      Thanks, Randy!!

                                      Yes!!!! since the pedal trangle of N and the reflection triangles are homothetic

                                      and later also appeared the point in question in the paper
                                      Jesus Torres, The triangle of reflections,Forum Geometricorum, 14 (2014) 265--294  [in Theorem 4.3].
                                      (published in 7 Oct. 2014)

                                      APH





                                    • Antreas Hatzipolakis
                                      ... [Peter Moses]: A few extra properties of the point: Barys: a^2 (a^2+b^2-c^2) (a^2-b^2+c^2) (a^4-2 a^2 b^2+b^4-2 a^2 c^2-b^2 c^2+c^4) (a^4 b^2-2 a^2
                                      Message 18 of 18 , Dec 16, 2014
                                      • 0 Attachment



                                        [Antreas]:

                                         Let ABC be a triangle and P a point.

                                        Denote:

                                        A'B'C' = the pedal triangle of P

                                        O' = the circumcenter of A'B'C' ( = the center of the pedal circle of P)

                                        A"B"C" = the pedal triangle of O'.

                                        Which is the locus of P such that A'B'C', A"B"C"
                                        are orthologic?

                                        On the locus:

                                        1. P = H (O' = N)

                                        Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C'

                                        Orthologic center (A'B'C', A"B"C") = ?

                                        2. P = Ο (O' = N)

                                        Orthologic center (A"B"C", A'B'C') = the O of A'B'C' =  the NPC center of ABC

                                        Orthologic center (A'B'C', A"B"C") = ? on the Euler line of the orthic triangle
                                        Which point is this wrt tr. ABC and which wrt orthic tr. of ABC?




                                        [Peter Moses]:

                                        >Which is the locus of P such that A'B'C', A"B"C" are orthologic?
                                        Circumcircle, infinity, K003. McCay cubic
                                         
                                        1)
                                        Orthologic center (A"B"C", A'B'C') = the NPC center of A'B'C' = X(143) of ABC
                                        Orthologic center (A'B'C', A"B"C") = on ABCs lines {{4,93},{6,24},{25,195},...} = X(79) of Orthic?
                                        2)
                                        Orthologic center (A'B'C', A"B"C") = X(1209) of ABC, X(3651) of Orthic. (probably!)
                                         
                                        Best regards
                                        Peter



                                        **************************

                                        Thanks, Peter,

                                        What a surprise! A new point in such a simple construction !!!!
                                        I wouldn't bet a cent for it as a new point :-)

                                        Description of the point:

                                        Let ABC be a triangle and A'B'C', A"B"C" the pedal triangles of H,N, resp.

                                        A'B'C', A"B"C" are orthologic with orthologic center (A'B'C', A"B"C")
                                        on {4,93},{6,24},{25,195},.. lines of ABC.

                                        If you compute other "things" of the point (coordinates etc) please let me know
                                        (to inform Clark)

                                        Season's Greetings

                                        APH


                                        [Peter Moses]:

                                        A few extra properties of the point:
                                         
                                        Barys: a^2 (a^2+b^2-c^2) (a^2-b^2+c^2) (a^4-2 a^2 b^2+b^4-2 a^2 c^2-b^2 c^2+c^4) (a^4 b^2-2 a^2 b^4+b^6+a^4 c^2-2 a^2 b^2 c^2-b^4 c^2-2 a^2 c^4-b^2 c^4+c^6)::
                                         
                                        On lines {{4,93},{6,24},{25,195},{49,143},{52,539},{70,6145},{113,5446},{155,3060},{403,3574},{648,1179},{1112,2914},{1209,1216},{1843,5965},{1986,3575}}.
                                        Reflection of X(i) in X(j) for these {i,j}: {54,973},{1493,143},{2914,1112}.
                                        3 X[1209] - 2 X[1216].
                                        3 X[54] - 5 X[3567].
                                        6 X[973] - 5 X[3567].
                                        X(4)-ceva conjugate of X(1594).
                                        X(4)-crosspoint of X(3518).
                                        X(3)-crosssum of X(3519).
                                        X(2216)-isoconjugate of X(3519).
                                        Trilinear product X(1594) X(2964).
                                        Barycentric product X(1594) X(1994).
                                        X(79) Orthic triangle.
                                        {{1,21},{7,79},...} of Tangential triangle.
                                         
                                        Best regards,
                                        Peter.





                                         








                                      Your message has been successfully submitted and would be delivered to recipients shortly.