Loading ...
Sorry, an error occurred while loading the content.

Re: [EMHL] EULER LINES

Expand Messages
  • Antreas Hatzipolakis
    ... Locus: Let ABC be a triangle, P a point and PaPbPc the Cevian (or pedal) Triangle of P. Let Iab, Iac be the excenters corresponding to the angles PBC, PCB
    Message 1 of 6 , Feb 28, 2010
    • 0 Attachment
      On Mon, Mar 1, 2010 at 12:16 AM, Antreas <anopolis72@...> wrote:

      >
      >
      > Let ABC be a triangle and HaHbHc its orthic triangle.
      > Let IaaIabIac, IbaIbbIbc and IcaIcbIcc be the excentral
      > triangles of HBC, HCA, HAB, resp.
      >
      > I think that the Euler lines of the triangles HaIabIac,
      > HbIbcIba, HcIcaIcb (and ABC) are concurrent (at the G of ABC).
      >
      > Generalization?
      >
      > Locus ? (if HaHbHc is the pedal triangle of a point P).
      >
      Locus:

      Let ABC be a triangle, P a point and PaPbPc the Cevian (or pedal) Triangle
      of P.

      Let Iab, Iac be the excenters corresponding to the angles
      PBC, PCB of the triangle PBC, resp.

      Let La be the Euler Line of the triangle PaIabIac.

      Similarly the Euler Lines Lb, Lc of the triangles PbIbcIba, PcIcaIcb, resp.

      Which is the locus of P such that La,Lb,Lc are concurrent?

      Antreas


      [Non-text portions of this message have been removed]
    Your message has been successfully submitted and would be delivered to recipients shortly.