Sorry, an error occurred while loading the content.

## 22065Fwd: [EGML] Re: Point ?

Expand Messages
• Mar 23, 2014

---------- Forwarded message ----------
Date: Sun, Mar 23, 2014 at 7:03 AM
Subject: RE: [EGML] Re: Point ?
To: Anopolis@yahoogroups.com

Point?

Z = ((36*R^2-7*SW)*SA^2+(-144*R^4-2*SW^2+38*SW*R^2)*SA+S^2*(-5*SW+24*R^2))*a :: (trilinears)

= (5,113) /\ (110,1593)

=  ( -4.440739185485755, -6.09447912568251, 9.909491192988773 )

Greetings

De: Anopolis@yahoogroups.com [mailto:Anopolis@yahoogroups.com] En nombre de Antreas Hatzipolakis
Enviado el: Sábado, 22 de Marzo de 2014 11:20 p.m.
Para: anopolis@yahoogroups.com; Hyacinthos
Asunto: [EGML] Re: Point ? [1 Attachment]

On Sat, Mar 22, 2014 at 8:01 PM, Antreas Hatzipolakis <anopolis72@...> wrote:

Let ABC be a triangle and AaBbCc its orthic triangle.

Denote:

Ab, Ac = the orthogonal projections of Aa on BBb, CCc, resp.

A2 = the orhogonal projection of Ab on AaAc

A3 = the ortogonal projection of Ac on AaAb

L1 = the Euler line of AaA2A3.

Similarly L2,L3 = the Euler lines of BbB3B1, CcC1C2, resp.

ABC and the three triangles are homothetic, so their Euler lines are

parallel.

Now, the reflections of L1,L2,L3 in (altitudes of ABC) AAa, BBb, CCc,

resp. are concurrent.

Point?

--
http://anopolis72000.blogspot.com/