Sorry, an error occurred while loading the content.
Browse Groups

• ... {
Message 1 of 46 , Dec 8 6:41 AM
View Source
--- In primenumbers@yahoogroups.com, "paulunderwooduk" <paulunderwood@...> wrote:

> I will continue testing the 2-selfridge minimal x test,

{
for(n=7,10000000000,if(n%50000000==0,print(n));if(gcd(n,30)==1&&!issquare(n)&&!isprime(n),x=1;while(kronecker(x^2-4,n)!=-1,x=x+1);if(Mod(Mod(1,n)*(l*x-3),l^2-x*l+1)^((n+1))+2*x^2-9==0,print(n" "x))))
}

This has reached 4*10^9.

The following is comparable in speed to the compiled ispseudoprime():

n=18885*2^18885-1;bin=binary(n+1);ln=length(bin);if(gcd(n,30)==1&&!issquare(n),x=1;while(kronecker(x^2-4,n)!=-1,x=x+1);print("x="x);a=x;b=-3;for(i=2,ln,na=a*(x*a+2*b);b=((b-a)*(b+a))%n;a=na%n;if(bin[i],na=(x^2-3)*a+x*b;b=-(x*a+3*b)%n;a=na%n));print(a==0&&Mod(b,n)==9-2*x^2))

I will switch to this logic for the rest of testing to 10^10...

Paul
• ... Combining fails with the composite counterexample n=256999 and x=32768, However, I have tested the 1+1+1+2 conjecture up to n
Message 46 of 46 , Apr 14, 2012
View Source
--- In primenumbers@yahoogroups.com, "paulunderwooduk" <paulunderwood@...> wrote:
>
>
>
> --- In primenumbers@yahoogroups.com, "paulunderwooduk" <paulunderwood@> wrote:
> >
> > Hi,
> >
> > I have added a Fermat test to make a 1+1+1+2 selfridge test:
> >
> > For N>5, with gcd(6,N)==1, find an integer x:
> > gcd(x^3-x,N)==1
> > kronecker(x^2-4,N)==-1
> >
> > and check:
> > (x+2)^((N-1)/2)==kronecker(x+2,N) (mod N) (Euler)
> > (x-2)^((N-1)/2)==kronecker(x-2,N) (mod N) (Euler)
> > x^(N-1)==1 (mod N) (Fermat)
> > L^(N+1) == 1 (mod N, L^2-x*L+1) (Lucas)
> >
>
> Note: I should say gcd(30,N)==1 because gcd(x^3-x,N)==1 and kronecker(x^2-4,n)==-1.
>
>
> Now consider combining the 2 Euler tests with the Lucas test:
>
> (L*D)^((n+1)/2)==D (mod N, L^2-x*L+1) (D=x^2-4.)
>
> with the restriction kronecker(x+2,N)==-1.
>
> These together with the Fermat test makes for a 1+2-selfridge test.
>
> Can you find a counterexample?
>
> So far the near-refutation from Pinch's carmichael list is:
> N,x,gcd(x^2-1)
> ------------------
> 1909001 884658 1909001
>
> Paul
>

Combining fails with the composite counterexample n=256999 and x=32768, However, I have tested the 1+1+1+2 conjecture up to n<10^7,

Paul -- restoring symmetry
Your message has been successfully submitted and would be delivered to recipients shortly.
• Changes have not been saved
Press OK to abandon changes or Cancel to continue editing
• Your browser is not supported
Kindly note that Groups does not support 7.0 or earlier versions of Internet Explorer. We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox. If you are using IE 9 or later, make sure you turn off Compatibility View.