Browse Groups

• ... b*t generates perfect squares and when those can be written by a number of quadratic polynomials (obviously a must be a quadratic residue of b) ...
Nov 4, 2005 1 of 3
View Source
--- In primenumbers@yahoogroups.com, "Hugo Scolnik \(fiber\)"
<scolnik@f...> wrote:
>
> I am studying under what cinditions a expression of the form a +
b*t generates perfect squares and when those can be written by a
residue of b)
>
....
> However, 281941 + 510510*t leads to perfect squares like
>
> x = 2321 x2 = 5387041
> x = 39721 x2 = 1577757841
> x = 62381 x2 = 3891389161
> x = 83479 x2 = 6968743441
> x = 94699 x2 = 8967900601
> x = 99781 x2 = 9956247961
> x = 107789 x2 = 11618468521
> x = 143539 x2 = 20603444521
> x = 154759 x2 = 23950348081
> x = 167849 x2 = 28173286801
> x = 185581 x2 = 34440307561
> x = 196801 x2 = 38730633601
>
> but I could not find quadratic polynomials as before
>

Basically you want to solve the Diophantine equation x^2 - 510510y -
281941 = 0. Plugging the numbers in my Quadratic Diophantine Equation
Solver ( http://www.alpertron.com.ar/QUAD.HTM ) you get all solutions:

x = 510510 u + 2321
y = 510510 u^2 + 4642 u + 10

and also:
x = 510510 u + 39721
y = 510510 u^2 + 79442 u + 3090

and also:
x = 510510 u + 62381
y = 510510 u^2 + 124762 u + 7622

and also:
x = 510510 u + 83479
y = 510510 u^2 + 166958 u + 13650

and also:
x = 510510 u + 94699
y = 510510 u^2 + 189398 u + 17566

and also:
x = 510510 u + 99781
y = 510510 u^2 + 199562 u + 19502

and also:
x = 510510 u + 107789
y = 510510 u^2 + 215578 u + 22758

and also:
x = 510510 u + 143539
y = 510510 u^2 + 287078 u + 40358

and also:
x = 510510 u + 154759
y = 510510 u^2 + 309518 u + 46914

and also:
x = 510510 u + 167849
y = 510510 u^2 + 335698 u + 55186

and also:
x = 510510 u + 185581
y = 510510 u^2 + 371162 u + 67462

and also:
x = 510510 u + 196801
y = 510510 u^2 + 393602 u + 75866

and also:
x = 510510 u + 209891
y = 510510 u^2 + 419782 u + 86294

and also:
x = 510510 u + 240559
y = 510510 u^2 + 481118 u + 113354

and also:
x = 510510 u + 245641
y = 510510 u^2 + 491282 u + 118194

and also:
x = 510510 u + 253649
y = 510510 u^2 + 507298 u + 126026

and also:
x = 510510 u + 256861
y = 510510 u^2 + 513722 u + 129238

and also:
x = 510510 u + 264869
y = 510510 u^2 + 529738 u + 137422

and also:
x = 510510 u + 269951
y = 510510 u^2 + 539902 u + 142746

and also:
x = 510510 u + 300619
y = 510510 u^2 + 601238 u + 177022

and also:
x = 510510 u + 313709
y = 510510 u^2 + 627418 u + 192774

and also:
x = 510510 u + 324929
y = 510510 u^2 + 649858 u + 206810

and also:
x = 510510 u + 342661
y = 510510 u^2 + 685322 u + 229998

and also:
x = 510510 u + 355751
y = 510510 u^2 + 711502 u + 247906

and also:
x = 510510 u + 366971
y = 510510 u^2 + 733942 u + 263790

and also:
x = 510510 u + 402721
y = 510510 u^2 + 805442 u + 317690

and also:
x = 510510 u + 410729
y = 510510 u^2 + 821458 u + 330450

and also:
x = 510510 u + 415811
y = 510510 u^2 + 831622 u + 338678

and also:
x = 510510 u + 427031
y = 510510 u^2 + 854062 u + 357202

and also:
x = 510510 u + 448129
y = 510510 u^2 + 896258 u + 393370

and also:
x = 510510 u + 470789
y = 510510 u^2 + 941578 u + 434158

and also:
x = 510510 u + 508189
y = 510510 u^2 + 1016378 u + 505878

For example your first solution is included in the first family of
solutions I presented above.

It appears that you couldn't find the families because you stopped
the search too soon. You have to continue with numbers x greater than
510510 to start seeing the families.

You can see the method I used at:
http://www.alpertron.com.ar/METHODS.HTM#Parabol

because this equation is a parabolic one (B^2 - 4AC = 0).

Best regards,

Dario Alpern
Buenos Aires - Argentina
• The quadratics giving the perfect squares of the form x2 = 281941 + 510510*t are f = 5387041 + 2369787420*i + 260620460100*i**2 f =
Nov 5, 2005 1 of 3
View Source
The quadratics giving the perfect squares of the form x2 = 281941 + 510510*t
are

f = 5387041 + 2369787420*i +
260620460100*i**2

f = 65977573321 + 262260218220*i +
260620460100*i**2

since 510510 = 2*3*5*7*11*13*17 the conjecture raised by a colleague about
the number of quadratics and the prime factors is false.

Dario: you were absolutely right. Thanks.

Hugo Scolnik

No man is justified in doing evil on the ground of expediency.

----- Original Message -----
From: "Dario Alpern" <alpertron@...>
Sent: Friday, November 04, 2005 5:08 PM
Subject: [PrimeNumbers] Re: Clarifying my question

> --- In primenumbers@yahoogroups.com, "Hugo Scolnik \(fiber\)"
> <scolnik@f...> wrote:
> >
> > I am studying under what cinditions a expression of the form a +
> b*t generates perfect squares and when those can be written by a
> residue of b)
> >
> ....
> > However, 281941 + 510510*t leads to perfect squares like
> >
> > x = 2321 x2 = 5387041
> > x = 39721 x2 = 1577757841
> > x = 62381 x2 = 3891389161
> > x = 83479 x2 = 6968743441
> > x = 94699 x2 = 8967900601
> > x = 99781 x2 = 9956247961
> > x = 107789 x2 = 11618468521
> > x = 143539 x2 = 20603444521
> > x = 154759 x2 = 23950348081
> > x = 167849 x2 = 28173286801
> > x = 185581 x2 = 34440307561
> > x = 196801 x2 = 38730633601
> >
> > but I could not find quadratic polynomials as before
> >
>
> Basically you want to solve the Diophantine equation x^2 - 510510y -
> 281941 = 0. Plugging the numbers in my Quadratic Diophantine Equation
> Solver ( http://www.alpertron.com.ar/QUAD.HTM ) you get all solutions:
>
> x = 510510 u + 2321
> y = 510510 u^2 + 4642 u + 10
>
> and also:
> x = 510510 u + 39721
> y = 510510 u^2 + 79442 u + 3090
>
> and also:
> x = 510510 u + 62381
> y = 510510 u^2 + 124762 u + 7622
>
> and also:
> x = 510510 u + 83479
> y = 510510 u^2 + 166958 u + 13650
>
> and also:
> x = 510510 u + 94699
> y = 510510 u^2 + 189398 u + 17566
>
> and also:
> x = 510510 u + 99781
> y = 510510 u^2 + 199562 u + 19502
>
> and also:
> x = 510510 u + 107789
> y = 510510 u^2 + 215578 u + 22758
>
> and also:
> x = 510510 u + 143539
> y = 510510 u^2 + 287078 u + 40358
>
> and also:
> x = 510510 u + 154759
> y = 510510 u^2 + 309518 u + 46914
>
> and also:
> x = 510510 u + 167849
> y = 510510 u^2 + 335698 u + 55186
>
> and also:
> x = 510510 u + 185581
> y = 510510 u^2 + 371162 u + 67462
>
> and also:
> x = 510510 u + 196801
> y = 510510 u^2 + 393602 u + 75866
>
> and also:
> x = 510510 u + 209891
> y = 510510 u^2 + 419782 u + 86294
>
> and also:
> x = 510510 u + 240559
> y = 510510 u^2 + 481118 u + 113354
>
> and also:
> x = 510510 u + 245641
> y = 510510 u^2 + 491282 u + 118194
>
> and also:
> x = 510510 u + 253649
> y = 510510 u^2 + 507298 u + 126026
>
> and also:
> x = 510510 u + 256861
> y = 510510 u^2 + 513722 u + 129238
>
> and also:
> x = 510510 u + 264869
> y = 510510 u^2 + 529738 u + 137422
>
> and also:
> x = 510510 u + 269951
> y = 510510 u^2 + 539902 u + 142746
>
> and also:
> x = 510510 u + 300619
> y = 510510 u^2 + 601238 u + 177022
>
> and also:
> x = 510510 u + 313709
> y = 510510 u^2 + 627418 u + 192774
>
> and also:
> x = 510510 u + 324929
> y = 510510 u^2 + 649858 u + 206810
>
> and also:
> x = 510510 u + 342661
> y = 510510 u^2 + 685322 u + 229998
>
> and also:
> x = 510510 u + 355751
> y = 510510 u^2 + 711502 u + 247906
>
> and also:
> x = 510510 u + 366971
> y = 510510 u^2 + 733942 u + 263790
>
> and also:
> x = 510510 u + 402721
> y = 510510 u^2 + 805442 u + 317690
>
> and also:
> x = 510510 u + 410729
> y = 510510 u^2 + 821458 u + 330450
>
> and also:
> x = 510510 u + 415811
> y = 510510 u^2 + 831622 u + 338678
>
> and also:
> x = 510510 u + 427031
> y = 510510 u^2 + 854062 u + 357202
>
> and also:
> x = 510510 u + 448129
> y = 510510 u^2 + 896258 u + 393370
>
> and also:
> x = 510510 u + 470789
> y = 510510 u^2 + 941578 u + 434158
>
> and also:
> x = 510510 u + 508189
> y = 510510 u^2 + 1016378 u + 505878
>
> For example your first solution is included in the first family of
> solutions I presented above.
>
> It appears that you couldn't find the families because you stopped
> the search too soon. You have to continue with numbers x greater than
> 510510 to start seeing the families.
>
> You can see the method I used at:
> http://www.alpertron.com.ar/METHODS.HTM#Parabol
>
> because this equation is a parabolic one (B^2 - 4AC = 0).
>
> Best regards,
>
> Dario Alpern
> Buenos Aires - Argentina
>
>
>
>
>
>
> Unsubscribe by an email to: primenumbers-unsubscribe@yahoogroups.com
> The Prime Pages : http://www.primepages.org/
>
>
>
>
>
>
>
>
>
Your message has been successfully submitted and would be delivered to recipients shortly.
• Changes have not been saved
Press OK to abandon changes or Cancel to continue editing
• Your browser is not supported
Kindly note that Groups does not support 7.0 or earlier versions of Internet Explorer. We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox. If you are using IE 9 or later, make sure you turn off Compatibility View.