Browse Groups

• Dear all, I found an answer to my question (pasted below). Andersen(1992) uses an estimator of K1,2(d) that combines the estimators K1,2 and K2,1 into a single
Message 1 of 1 , Apr 5, 2000
View Source
Dear all,

I found an answer to my question (pasted below). Andersen(1992) uses an
estimator of K1,2(d) that combines the estimators K1,2 and K2,1 into a
single estimator. This estimator, mentionaed by Lotwick and Silverman
(1983), is the linear combination:

(n2K12(d) + n1K21(d))/(n1 + n2)

where n1 and n2 are the number of type 1 and type 2 events.

I hope this can help others with the same problem.

Martin Béland wrote:
>
> Dear netters,
>
> I recently posted a summary of questions and responses about analyses of
> point patterns to study competition in mixed jack pine stands. Here is
> one more question that arose from running the software called
> "Potempkin" to compute intertype Ripley's K(d) analysis :
>
> I thought that bivariate analysis of interaction between species 1 and 2
> should be the same as that of interaction between species 2 and 1. The
> output given by potemkin for the bivariate analysis includes K1,1 K1,2
> K2,1 and K2,2. The values for K1,2 and K2,1 for short values of d are
> the same but as d increases, K2,1 becomes larger that K1,2. The
> confidance intervals are different from the beginning. How do you
> explain this?
>
> To this, John Brzustowski, the author of the programm replied to me
>
> > Good question. I don't seem to have a paper describing the bivariate
> > K here, but what I think is happening is this:
> > The obvious definition for bivariate K(t) would be the proportion of
> > pairs of individuals, the first of species 1, the second of species 2,
> > that lie within a distance t or less of each other. That would give a
> > symmetric definition. But I think Ripley does this a bit differently:
> > K1,2 (t) is the average, over all individuals in species 1, of the
> > proportion of species 2 neighbours that are within distance t of the
> > individual in species 1. This is a bit tricky, but it just amounts to
> > weighting the pairs differently in each case. I suppose an advantage
> > of this approach is it should allow one to detect attraction of
> > species 1 by species 2, as opposed to the other way around. Maybe.
> >
>
> Does any of you know:
> 1- if other software compute the bivariate K(t) in a different way that
> use a symmetric definition of the interaction? and
> 2- if there is no other way to compute the bivariate K(t), how do you
> suggest the result must be interpreted, that is, which of K1,2 or K2,1
> must be used in which situation?
>
> Any help would be appreciated,
>
Martin Béland, biologiste, Ph.D. Env.
Unité de recherche et de développement forestiers de
l'Abitibi-Témiscamingue
Université du Québec en Abitibi-Témiscamingue
445, boulevard Université
Rouyn-Noranda (Québec) J9X 5E4
Téléphone : (819) 762-0971 #2458
Fax : (819) 797-4727
Courriel : martin.beland@...
--
*To post a message to the list, send it to ai-geostats@....
*As a general service to list users, please remember to post a summary
of any useful responses to your questions.
*To unsubscribe, send email to majordomo@... with no subject and
"unsubscribe ai-geostats" in the message body.
DO NOT SEND Subscribe/Unsubscribe requests to the list!
Your message has been successfully submitted and would be delivered to recipients shortly.
• Changes have not been saved
Press OK to abandon changes or Cancel to continue editing
• Your browser is not supported
Kindly note that Groups does not support 7.0 or earlier versions of Internet Explorer. We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox. If you are using IE 9 or later, make sure you turn off Compatibility View.