Browse Groups

• Goto Message #
3507
Re: A divisibility recurrence analog of series reversion Clear[t, n, k, i, x] coeff = {-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; nn = Length[coeff] cc = Range[nn]*0 + 1; Monitor[Do[ Clear[t]; t[n_, 1] := t[n, 1] =
Mats Granvik
8:51 AM
#3507

3506
Re: A divisibility recurrence analog of series reversion Clear[t, n, k, i] coeff = {-2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; nn = Length[coeff] cc = Range[nn]*0 + 1; Monitor[Do[
Mats Granvik
5:35 AM
#3506

3505
A divisibility recurrence analog of series reversion Clear[t, n, k, i] coeff = {1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; nn = Length[coeff] cc = Range[nn]*0 + 1; Monitor[Do[ Clear[t]; t[n_, 1] := t[n, 1] = cc[[n]];
Mats Granvik
5:14 AM
#3505

3504
Rolling Hypocycloids | Azimuth Link from John Chalmers: http://johncarlosbaez.wordpress.com/2013/12/03/rolling-hypocycloids/
Roger Bagula
Dec 5
#3504

3503
3d projection of ZetaZeros Integrations This one is kind of slow, but it gives an idea of the distribution of the ZetaZero curves: f[p_, n_] = Zeta[1/2 + I*(1 - p)*Im[ZetaZero[n]] + I*p*Im[ZetaZero[n
Roger Bagula
Dec 4
#3503

3502
another way to visualize the ZetaZeros trajectory as an Integration f[p_, n_] = Zeta[1/2 + I*(1 - p)*Im[ZetaZero[n]] + I*p*Im[ZetaZero[n + 1]]] a = Table[{Re[NIntegrate[f[p, n], {p, 0, 1}]], Im[NIntegrate[f[p, n], {p, 0, 1}]]},
Roger Bagula
Dec 4
#3502

3501
Re: Zeta plots of ZetaZero Beziers This projection makes 3d surfaces of each one: f[p_, n_] = Zeta[1/2 + I*(1 - p)*Im[ZetaZero[n - 1]] + I*p*Im[ZetaZero[n]]] Table[ParametricPlot3D[{Re[f[p,
Roger Bagula
Dec 3
#3501

3500
Re: truncated crossdirectional partial tetration Nice wiggly graphic... I like chaotic staircases...!
Roger Bagula
Dec 3
#3500

3499
truncated crossdirectional partial tetration I posted this question today: http://math.stackexchange.com/questions/591046/is-crossdirectional-partial-tetration-of-order-nc Diplomingenjör Mats Granvik
Mats Granvik
Dec 3
#3499

3498
Re: Zeta plots of ZetaZero Beziers Probably the same dynamics but mine makes them "slices" on a 3d surface instead of a long single curve. ... Probably the same dynamics but mine makes them
Roger Bagula
Dec 3
#3498

3497
Re: Zeta plots of ZetaZero Beziers I might be wrong. Diplomingenjör Mats Granvik http://math.stackexchange.com/users/8530/mats-granvik To: active_mathematica@yahoogroups.com From:
Mats Granvik
Dec 3
#3497

3496
Re: Zeta plots of ZetaZero Beziers That plot at the end of your code looks like a classic which one finds when searching images on google. Eric Stucky found this plot which I believe is a 3D
Mats Granvik
Dec 3
#3496

3495
Zeta plots of ZetaZero Beziers I thought Mats might like to play with these: f[p_, n_] = Zeta[1/2 + I*(1 - p)*Im[ZetaZero[n - 1]] + I*p*Im[ZetaZero[n]]] a = Table[ParametricPlot[{Re[f[p,
Roger Bagula
Dec 3
#3495

3494
Russell's Paradox: Here's Why Maths Can't Have A Set Of Everything | http://www.businessinsider.com.au/how-russells-paradox-changed-set-theory-2013-11 Russell's Paradox: Here's Why Maths Can't Have A Set Of Everything Andy
Roger Bagula
Dec 2
#3494

3493
biscuits using Fourier series as zig zags Instead of using a Mandelbrot like unit cartoon, here a unit Fourier series sum function is used: ( really slow, but in version 9.01 works where it didn't in
Roger Bagula
Nov 30
#3493

3492
Power series for Lambert W(z) at z infinity? Normally I believe the power series for Lambert W does not converge for z greater than 1/Exp(1) This generalization makes it converges, although it requires a
Mats Granvik
Nov 29
#3492

3491
To What Extent Do We See With Mathematics? | Guest Blog, Scientific http://blogs.scientificamerican.com/guest-blog/2013/11/27/to-what-extent-do-we-see-with-mathematics/ To What Extent Do We See With Mathematics? By Joselle
Roger Bagula
Nov 29
#3491

3490
iSquared Magazine - National STEM Centre http://www.nationalstemcentre.org.uk/elibrary/collection/1860/isquared-magazine iSquared Magazine Issue 1 This edition of iSquared magazine features:
Roger Bagula
Nov 28
#3490

3489
The Stereotypes About Math That Hold Americans Back - Jo Boaler - Th http://www.theatlantic.com/education/archive/2013/11/the-stereotypes-about-math-that-hold-americans-back/281303/ The Stereotypes About Math That Hold Americans
Roger Bagula
Nov 28
#3489

3488
Re: Argument of Zeta function Here is one similar from a complex analysis text: Sum[(-1)^(n + 1)*Sin[2*Pi*n/8]/(2*Pi*n/8), {n, 1, Infinity}] -((2 I (Log[1 + (-1)^(1/4)] - Log[1 -
Roger Bagula
Nov 28
#3488

3487
Argument of Zeta function http://math.stackexchange.com/questions/584391/serie-for-textarg-zeta-z Diplomingenj�r Mats Granvik http://math.stackexchange.com/users/8530/mats-granvik
Mats Granvik
Nov 28
#3487

3486
Re: Bernoulli numbers.-> series sums-infinite sums The Zig Zag numbers are sequence A000111 http://oeis.org/A000111 which appear to be the first column of: http://oeis.org/A162170 Diplomingenjör Mats Granvik
Mats Granvik
Nov 28
#3486

3485
Re: Bernoulli numbers.-> series sums-infinite sums Symmetrical versions: In[127]:= e[0, 0] := 1 e[n_, 0] := 0 e[n_, k_] := e[n, k] = e[n, k - 1] + e[n - 1, n - k] In[130]:= Table[Table[1 + e[n, k] + e[n, n - k]
Roger Bagula
Nov 28
#3485

3484
Re: Bernoulli numbers.-> series sums-infinite sums From: http://mathworld.wolfram.com/EulerZigzagNumber.html In[72]:= e[0, 0] := 1 e[n_, 0] := 0 e[n_, k_] := e[n, k] = e[n, k - 1] + e[n - 1, n - k] In[75]:=
Roger Bagula
Nov 28
#3484

3483
Re: Bernoulli numbers.-> series sums-infinite sums Bernoulli are related to blackbody radiation and bosons in statistical mechanics theory. I've never heard of "Euler Zig Zag numbers", but I'll search for it.
Roger Bagula
Nov 28
#3483

3482
Re: Bernoulli numbers.-> series sums-infinite sums Yes that is as in the definition in Spiegel's Mathematical handbook. It is the Euler Zig Zag numbers I was interested in and how they related to Boustrophedon
Mats Granvik
Nov 28
#3482

3481
making hexarational functions and getting a renormalization polynomi In[48]:= Clear[a, b, w, p, d, e] In[49]:= a = Sum[(x^m)^n, {n, 0, Infinity}] Out[49]= -(1/(-1 + x^m)) In[50]:= b = Sum[(x^m - 1)^n, {n, 0, Infinity}] Out[50]=
Roger Bagula
Nov 27
#3481

3480
Re: Bernoulli numbers.-> series sums-infinite sums Clear[a, b] a = Sum[BernoulliB[n]*x^n/n!, {n, 0, Infinity}] x/(-1 + E^x) b = Sum[(Exp[x])^n, {n, 0, Infinity}] -(1/(-1 + E^x)) FullSimplify[a + x*b] 0
aka: fuzzy
Nov 27
#3480

3479
Bernoulli numbers. Clear[nn, A1, A2, A3, A4, A5, A6, A7, A8, A9] nn = 42; Clear[t, n, k]; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1] + t[n - i, k], {i,
Mats Granvik
Nov 25
#3479

3478
Zeichick’s Take: The amazing new old Wolfram Language - SD Times: http://www.sdtimes.com/content/article.aspx?ArticleID=66411&page=1 ZeichickÆs Take: The amazing new old Wolfram Language By Alan Zeichick November 25, 2013 ù
Roger Bagula
Nov 25
#3478

View First Topic Go to View Last Topic